Public append-only logs

Linus Nordberg, NORDUnet
linus@nordu.net 0x23291265

FRISC winter school, Finse, Norway
Introduction

Overview

Applications

Monitoring and auditing

A CT log implementation

Public append-only logs
Detection

- Protection is hard
- …let’s detect more
- Both for protecting the next
- …and for deterrence
Detection

- Protection is hard
- ...let's detect more
- Both for protecting the next
- ...and for deterrence

Public append-only logs
Detection

- Protection is hard
- ...let's detect more
- Both for protecting the next
- ...and for deterrence
Detection

- Protection is hard
- ...let's detect more
- Both for protecting the next
- ...and for deterrence
Introduction

Overview

Applications

Monitoring and auditing

A CT log implementation

Public append-only logs
An introduction to public, append-only, untrusted logs.
A log is a database with log entries.
Public

- Anybody can retrieve a log entry
- In some systems anybody can submit log entries
- ...in which case spam countermeasures is a good idea
Public

- Anybody can retrieve a log entry
- In some systems anybody can submit log entries
- ...in which case spam countermeasures is a good idea
Public

- Anybody can retrieve a log entry
- In some systems anybody can submit log entries
- ...in which case spam countermeasures is a good idea
Append-only

- Entries can be added but never changed or removed
- A pretty specialised database
- Poses some operational challenges

Public append-only logs
Append-only

- Entries can be added but never changed or removed
- A pretty specialised database
- Poses some operational challenges
Append-only

- Entries can be added but never changed or removed
- A pretty specialised database
- Poses some operational challenges
Untrusted

- Important, to avoid “just another key”
- A lying or compromised log will get caught
Untrusted

- Important, to avoid “just another key”
- A lying or compromised log will get caught
A solution

- Merkle tree
 - Signed tree heads
 - The need for a quick proof of inclusion – signed timestamps
 - Auditing is crucial
A solution

- Merkle tree
- Signed tree heads
 - The need for a quick proof of inclusion – signed timestamps
 - Auditing is crucial
A solution

- Merkle tree
- Signed tree heads
- The need for a quick proof of inclusion – signed timestamps
- Auditing is crucial
A solution

- Merkle tree
- Signed tree heads
- The need for a quick proof of inclusion – signed timestamps
- Auditing is crucial
Introduction

Overview

Applications

Monitoring and auditing

A CT log implementation
What append-only logs can be used for.
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance

Public append-only logs
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance

Public append-only logs
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance
X509 certificates, a.k.a. CT

- Certificate Transparency, RFC 6962
- Anybody can (and CA:s should) submit certs to logs
- Browsers require certs to be logged
- Monitors keep logs honest
- Signed Certificate Timestamps for quicker “proof”
- Enabling site owners, who are the ones who really know about issuance
Binary Transparency

▶ Am I running the same code as everybody else?
▶ Any binary, including typically closed firmware
▶ …but also code like JavaScript
▶ Goes especially well with reproducible builds

Public append-only logs
Binary Transparency

- Am I running the same code as everybody else?
- Any binary, including typically closed firmware
- …but also code like JavaScript
- Goes especially well with reproducible builds
Binary Transparency

- Am I running the same code as everybody else?
- Any binary, including typically closed firmware
- ...but also code like JavaScript
- Goes especially well with reproducible builds
Binary Transparency

- Am I running the same code as everybody else?
- Any binary, including typically closed firmware
- …but also code like JavaScript
- Goes especially well with reproducible builds
DNSSEC Transparency

- Lots of keys in DNSSEC
- Especially the DS records should be watched, to detect misissuance by parent zone
- See draft-zhang-trans-ct-dnssec
DNSSEC Transparency

- Lots of keys in DNSSEC
- Especially the DS records should be watched, to detect misissuance by parent zone
- See draft-zhang-trans-ct-dnssec
DNSSEC Transparency

- Lots of keys in DNSSEC
- Especially the DS records should be watched, to detect misissuance by parent zone
- See draft-zhang-trans-ct-dnssec
Tor Consensus Transparency

- Tor consensus documents are trusted if they’re signed by five keys
- Logging consensus documents would increase the chances of detecting an attack against a subset of the users
- Directory caches could act as log auditors with help from clients
- See “Tor Consensus Transparency proposal”
Tor Consensus Transparency

- Tor consensus documents are trusted if they’re signed by five keys
- Logging consensus documents would increase the chances of detecting an attack against a subset of the users
- Directory caches could act as log auditors with help from clients
- See “Tor Consensus Transparency proposal”
Tor Consensus Transparency

- Tor consensus documents are trusted if they’re signed by five keys
- Logging consensus documents would increase the chances of detecting an attack against a subset of the users
- Directory caches could act as log auditors with help from clients
- See “Tor Consensus Transparency proposal”
Tor Consensus Transparency

- Tor consensus documents are trusted if they’re signed by five keys
- Logging consensus documents would increase the chances of detecting an attack against a subset of the users
- Directory caches could act as log auditors with help from clients
- See “Tor Consensus Transparency proposal”
System logs

- Also known as syslog
- Probably not public
- ...but append-only and untrusted
- Useful for forensics
- See Crosby and Wallach 2009
System logs

- Also known as syslog
- Probably not public
- ...but append-only and untrusted
- Useful for forensics
- See Crosby and Wallach 2009
System logs

- Also known as syslog
- Probably not public
- ...but append-only and untrusted
- Useful for forensics
- See Crosby and Wallach 2009
System logs

- Also known as syslog
- Probably not public
- ...but append-only and untrusted
- Useful for forensics

See Crosby and Wallach 2009
System logs

- Also known as syslog
- Probably not public
- ...but append-only and untrusted
- Useful for forensics
- See Crosby and Wallach 2009
Notary services

- Diplomas from online courses
- Timestamp service
- Tax office has seen a receipt
- Tracking legal documents like consent receipts
Notary services

- Diplomas from online courses
- Timestamp service
 - Tax office has seen a receipt
 - Tracking legal documents like consent receipts
Notary services

- Diplomas from online courses
- Timestamp service
- Tax office has seen a receipt
- Tracking legal documents like consent receipts
Notary services

- Diplomas from online courses
- Timestamp service
- Tax office has seen a receipt
- Tracking legal documents like consent receipts
Monitoring, introduction

- Log auditing ensures that the log behaves correctly, i.e.
 - does include submitted entries in the log, on time
 - doesn’t change or remove any entries
- Log monitoring cares also about the contents of the log
Monitoring, introduction

- Log auditing ensures that the log behaves correctly, i.e.
 - does include submitted entries in the log, on time
 - doesn’t change or remove any entries
- Log monitoring cares also about the contents of the log
Monitoring, introduction

- Log auditing ensures that the log behaves correctly, i.e.
 - does include submitted entries in the log, on time
 - doesn’t change or remove any entries
- Log monitoring cares also about the contents of the log
Monitoring, introduction

- Log auditing ensures that the log behaves correctly, i.e.
 - does include submitted entries in the log, on time
 - doesn’t change or remove any entries
- Log monitoring cares also about the contents of the log
Temporal

Verifying log consistency over time

- An inclusion proof shows that a given entry is indeed part of a given tree
- Auditors send a log index I and a signed tree head STH and
- ...receive the nodes needed to calculate STH given entry number I
Temporal

Verifying log consistency over time

- An inclusion proof shows that a given entry is indeed part of a given tree
- Auditors send a log index I and a signed tree head STH and
- ...receive the nodes needed to calculate STH given entry number I
Temporal

Verifying log consistency over time

- An inclusion proof shows that a given entry is indeed part of a given tree
- Auditors send a log index I and a signed tree head STH and
- ...receive the nodes needed to calculate STH given entry number I
Temporal (cont.)

- A consistency proof shows that a given signed tree head STH_1 is a subset of another given signed tree head STH_2
- Auditors send two tree sizes, I_1 and I_2, representing STH_1 and STH_2 and
- ...receive the nodes required to verify that the first I_1 entries are equal in both trees
- Consistency proofs also make it possible to discard old tree heads once they’ve been verified
Temporal (cont.)

- A consistency proof shows that a given signed tree head STH_1 is a subset of another given signed tree head STH_2
- Auditors send two tree sizes, I_1 and I_2, representing STH_1 and STH_2 and
- ...receive the nodes required to verify that the first I_1 entries are equal in both trees
- Consistency proofs also make it possible to discard old tree heads once they’ve been verified
Temporal (cont.)

- A consistency proof shows that a given signed tree head STH_1 is a subset of another given signed tree head STH_2
- Auditors send two tree sizes, I_1 and I_2, representing STH_1 and STH_2 and
- ...receive the nodes required to verify that the first I_1 entries are equal in both trees
- Consistency proofs also make it possible to discard old tree heads once they've been verified
Temporal (cont.)

- A consistency proof shows that a given signed tree head STH_1 is a subset of another given signed tree head STH_2
- Auditors send two tree sizes, I_1 and I_2, representing STH_1 and STH_2 and
- ...receive the nodes required to verify that the first I_1 entries are equal in both trees
- Consistency proofs also make it possible to discard old tree heads once they’ve been verified
Spatial

Verifying log consistency in space, i.e. the same log being shown to all parties

- A log could fork the tree and serve certain clients a different view
- This is detected by clients gossiping about their view of the log
- Not specified how this should be done yet, but see draft-linus-trans-gossip-ct for a suggestion
- Except it lacks gossiping of STH’s
Spatial

Verifying log consistency in space, i.e. the same log being shown to all parties

- A log could fork the tree and serve certain clients a different view
- This is detected by clients gossiping about their view of the log
- Not specified how this should be done yet, but see draft-linus-trans-gossip-ct for a suggestion
- Except it lacks gossiping of STH’s
Spatial

Verifying log consistency in space, i.e. the same log being shown to all parties

- A log could fork the tree and serve certain clients a different view
- This is detected by clients gossiping about their view of the log
- Not specified how this should be done yet, but see draft-linus-trans-gossip-ct for a suggestion
- Except it lacks gossiping of STH’s
Spatial

Verifying log consistency in space, i.e. the same log being shown to all parties

- A log could fork the tree and serve certain clients a different view
- This is detected by clients gossiping about their view of the log
- Not specified how this should be done yet, but see draft-linus-trans-gossip-ct for a suggestion
- Except it lacks gossiping of STH’s
Introduction
Overview
Applications
Monitoring and auditing

A CT log implementation
catfish design

- NORDUnet is developing a CT log as part of a GÉANT project
- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)
- HSM support
catfish design

- NORDUnet is developing a CT log as part of a GÉANT project
- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)
- HSM support
catfish design

- NORDUnet is developing a CT log as part of a GÉANT project
- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)
- HSM support
catlfish design

- NORDUnet is developing a CT log as part of a GÉANT project
- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)
- HSM support
NORDUnet is developing a CT log as part of a GÉANT project

- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)

- HSM support

Public append-only logs
catlfish design

- NORDUnet is developing a CT log as part of a GÉANT project
- Free software, written in Erlang
- Modular – build other transparency systems
- Distributed – scalability and participation across organisational boundaries
- Expecting moderate write load (submit, 0.1 qps) and very high read load (queries, 7-20k qps)
- HSM support
Sources and credit

- RFC 6962, IETF
- Tor Consensus Transparency proposal
 https://gitweb.torproject.org/user/linus/torspec.git/tree/propose/ideas/
 xxx-tor-consensus-transparency.txt?h=tct
 http://static.usenix.org/event/sec09/tech/full_papers/crosby.pdf
Questions and discussion