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Cast: Main characters

I Alice , a talkative sender.

I Bob , an eager listener.

I Eve , a nosy eavesdropper who wishes to listen

passively to the contents of the messages from Alice to
Bob.

I Willie , a wiley warden who wishes to determine

with precision whether at all Alice transmits to Bob. Willie
does not care about the content of transmitted messages.
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What do Alice and Bob want?

Alice wants to send messages to Bob...
I reliably and efficiently

I Information theory
I securely: confidentially,authenticated

I Cryptography
I Other security techniques
I Information Theory

I stealthily
I Anonymizing networks?
I Information Theory
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Information theory and noisy channels

I What is Information?
I Consider a discrete stochastic variable X with set of

possible outcomes X and probability mass function p(x).
The entropy of X , measured in bits, is

H(X ) = −
∑
x∈X

p(x) log2 p(x) = H(p()). (1)

In particular, in the (worst) case where p(x) is the uniform
distribution on X , it holds that H(X ) = log2(|X |).

I Consider two discrete stochastic variables X and Y with
set of possible outcomes X = Y and joint probability mass
function p(x , y). The mutual information between X and Y ,
measured in bits, is

I(X ;Y ) = I(Y ;X ) = H(X )−H(X |Y ) = H(Y )−H(Y |X ). (2)
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Some remarks on information theory

I Information and “Information”
I Information versus entropy
I Information theory versus probability theory
I Information versus computation
I The “Bandwagon” - good and bad application areas

I “Easy to apply”: Digital communications, Experiment
design, Compressed sensing

I “Hard to apply”: Biology? Medicine? Linguistics? Social
Sciences?

I Information versus psychology
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Shannon’s noisy channel

Alice’s

Encoder

Noisy communication

channel

P ( b|a )

Bob’s

decoder

Alice

Bob

MessageM An Bn EstimateMB

CShannon = max
p(a)

I(A;B),



10/53

Shannon’s noisy channel: Tools used in proof

I Typical sequences of length n
x typical iff freq(x) ≈ p(x)⇒ p(x) ≈ 2−nH(x)

I Jointly typical sequences
a typical, b ∼ P(b|a) : P((a,b) typical) ≈ 1
a typical, b typical : P( random a,b) typical) . 2−(nI(a;b)))

I Random coding
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Shannon’s noisy channel: Sketch of proof, R < C

I Message m = {m1, . . . ,mk}, k = 2nR

I Choose 2nR random length-n codewords according to
p∗(a)

I Choose message m0, send codeword a(m0), receive b
I Decode received b to m iff (a(m),b) typical
I Error if

1. (a(m0),b) atypical, or
2. ∃m 6= m0 s. t. (a(m),b) typical

Probabilities of these events:
1. P((a(m0),b) atypical )→n→∞ 0
2. P() ≤ 2nRP( random a,b) typical) . 2n(R−C)
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Shannon’s noisy channel: Fano’s lemma

Fano’s lemma: A,B rand.var. ∈ {x1, . . . , xL}.
Let Pe = P(Z = 1) = P(A 6= B). Then

H(A|B) ≤ H(Pe) + Pe log2(L− 1)

Proof:

H(A|B) = H(A|B) + H(Z |A,B)

= H(A,Z |B)

= H(Z |B) + H(A|B,Z )

≤ H(Z ) + H(A|B,Z )

≤ H(Z ) + P(Z = 1) log2(L− 1)
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Shannon’s noisy channel: Sketch of proof, R > C

M binary i. i. d., Message m = (m1, . . . ,mk ),
decoded message m̂ = (m̂1, . . . , m̂k )
Z = 1 if m 6= m̂, otherwise Z = 0.

H(Pe) + Pe(log2(2
k − 1) ≥ H(m|m̂)

= H(m)− I(m; m̂)

≥ H(m)− I(a;b)
≥ k − nC = k(1− C/R)

Pe ≥ 1− C/R
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The Broadcast Channel
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The Broadcast Channel
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The broadcast channel: Sketch of proof, and example

I Jointly typical sequences
I Superposition coding
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The Broadcast Channel, Degraded
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The Broadcast Channel, Generalized
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The wiretap channel (Type I)
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The wiretap channel (Type II)
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“... as we know, there are known knowns; there are things we
know we know. We also know there are known unknowns; that
is to say we know there are some things we do not know. But
there are also unknown unknowns - the ones we don’t know we
don’t know. ...”- D.Rumsfeld
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Covert, deniable, subliminal, invisible, undetectable
communication

I What if Alice and Bob does not want a listener to know that
there is communication

I In general, communication can be reliably detected unless
Alice and Bob has an advantage:

I shared randomness
I better channel
I more channels
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Steganography

I Methods for encoding hidden messages in an apparently
legitimate and apparently innocent host message

I Alice may tattoo a hidden message on a messenger’s
shaved head

I Alice may write a message in invisible ink between the
lines of an innocent-looking pretext letter.

I alice may write a message So That a rEceiver GAN fOcus
on larGe letteRs And PHorget anY small ones.
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Steganography
I Suppose Alice purports to send a message to Bob from

the set {Alice, Bob, Marilyn}, representing the message as

a picture. Let Alice = { , },

Bob = { , }, and

Marilyn = { , }

I It follows that Alice may send one bit to Bob by selecting a
pre-agreed image for each of the three possible cover
messages.
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Simmons’ prisoner’s problem

I Alice and Bob are prisoners who want to exchange
information so that Willie is unable to detect the information
transfer

I Using protocol redundancy
I Concrete example: Using cryptographic signature

schemes
I Signature protocol uses random nonce
I Alice and Bob sneakily agree to encode information into the

choice of nonce
I “Steganography”, but hard for Willie to detect and prove
I Can be blocked by zero-knowledge proofs etc, but still

allows 1-bit subliminal channel (Desmedt)
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Reliable deniable channels

Alice’s

Encoder

Communication

channel

P ( w,b|a )

Bob’s

decoder

Willie’s

observation

Alice

Bob

Willie

MessageM An Bn

Wn

EstimateMB

Estimate TW

T
ra
n
sm
is
si
o
n

st
at
u
s 

T

Figure: An information theoretic view of a reliable deniable channel,
corresponding to a “noisy subliminal channel”.
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Reliable deniable AWGN channels with randomness
common to Alice and Bob
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Figure: An, Bn, and W n are real-valued n-dimensional vectors, and
Z n

B and Z n
W are n-dimensional AWGN noise vectors. Alice and Bob

need to share a secret key.
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A reminder of complexity notation

I f (n) = O(g(n)) if there exist constants m,n0 > 0 such that
0 ≤ f (n) ≤ mg(n) for all n ≥ n0. This means that “f (n)
grows roughly at the same rate as g(n)”.

I f (n) = o(g(n)) if, for any constant m > 0 there exists a
constant n0 > 0 such that 0 ≤ f (n) < mg(n) for all n ≥ n0.
This means that “f (n) grows slower than g(n)”.

I f (n) = ω(g(n)) if, for any constant m > 0 there exists a
constant n0 > 0 such that 0 ≤ mg(n) < f (n) for all n ≥ n0.
This means that “f (n) grows faster than g(n)”.
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Reliable deniable AWGN channels with randomness
common to Alice and Bob: Results

1. For any ε > 0 and unknown σ2
W , Alice can reliably transmit

o(
√

n) information bits to Bob in n channel uses while
lower-bounding Willies sum of the probabilities of detection
errors α+ β ≥ 1− ε.

2. If Alice knows a nontrivial lower bound σ̂2
W > 0 on the

noise power on Willie′s channel (i.e., σ2
W ≥ σ̂

2
W ), she can

reliably transmit O(
√

n) information bits to Bob in n channel
uses while lower-bounding Willie′s sum of the probabilities
of detection errors α+ β ≥ 1− ε.

3. Conversely, if Alice attempts to transmit ω(
√

n) bits in n
channel uses, then, as n→∞, either α+ β is arbitrarily
close to zero or the communication to Bob is not reliable,
regardless of the length of the shared secret.
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Reliable deniable AWGN channels with randomness
common to Alice and Bob: Interpretation

1. The capacity limn→∞
O(
√

n)
n = 0. But for finite codeword

lengths n, a substantial amount O(
√

n) of information may
be reliable transmitted with low probability of detection.

2. Proof: A random coding argument, with actual code
disguised by “key”.

3. Bob faces a noisy channel decoding problem.
4. The amount of randomness: Simple scheme requires n

coded bits, for an O(
√

n)-length message. A more refined
scheme requiring O(

√
n) log n is also presented.

5. The constants involved can become very small.
6. Prior probability distribution on T is assumed unknown,

does it matter?
7. Quantum channel version
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Reliable deniable BSC channels without randomness
common to Alice and Bob
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Figure: The binary symmetric subliminal channel. Here An, Bn, and
W n are binary n-dimensional vectors, and Z n

B and Z n
W are binary

n-dimensional noise vectors in which elements are generated
independently according to their respective Bernoulli distributions.
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Reliable deniable BSC channels without randomness
common to Alice and Bob: Results

1. Deniability. When T = 0, Willie should observe a fraction
of pw 1’s. So if Alice uses a code with codewords of weight
larger than npw , then Willie will suspect that T = 1.

2. Reliability and deniability: upper bound on code rate. If
Bob’s channel is noisy and reliable communication to Bob
is required, any code selected by Alice can convey at most
O(
√

n) information bits per n channel uses.
3. Reliability and deniability: lower bound on code rate. If

Bob’s channel is sufficiently much better than Willie’s, then
there exist (random) codes that can convey to Bob O(

√
n)

information bits per n channel uses. If Bob’s channel is
noiseless, there exist (random) codes that can convey to
Bob O(

√
n) log n information bits per n channel uses.
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Reliable deniable BSC channels without randomness
common to Alice and Bob: Interpretations

1. This channel also has “zero capacity”, but still allows, in
theory, a substantial reliable and undetectable information
transfer.

2. When T = 0, Alice transmits nothing, and Willie observes
only noise. For T = 1, Willie observes the (mod 2) sum of
a codeword and random Bernoulli noise.

3. Bob faces a (modified) BSC decoding problem. When
T = 0, such decoding will be unsuccessful with
overwhelming probability. Thus the channel will not
produce “false information” to Bob. When T = 1, such
decoding will be successful with overwhelming probability,
provided that the code is appropriately selected.
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Why Alice and Bob may have a harder time in practice
than in theory

I Codeword synchronization
I Key synchronization (for the AWGN case)
I For the AWGN channel: How is Willie’s observed signal to

noise ratio obtained?
For the BSC channel: How is pw obtained?

I Implementation in practice? Random coding is merely a
theoretical tool and has no practical usage. What practical
coding schemes can be used?
AWGN: possible to use a normal LDPC code?
Noisy BSC subliminal channel: Need nonlinear codes.

I Consider an example of a malware (software/hardware)
agent that uses a “compromising emanations” secondary
wireless channel for sending messages to Bob.
In this case Willie typically will have a better SNR than Bob.
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Why Willie may have a harder time in practice

I From Willie’s perspective, the assumption of knowing the
code agreed between Alice and Bob is a best-case
scenario.

I For the previous issue, will a compressed sensing
approach be sensible for Willie? That is, can we observe
communication knowing that a code is used, but not which
code is used?
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Other issues

I In an AWGN channel where Bob has a better channel than
Willie, do Alice and Bob need common randomness?

I Schemes that require common randomness between Alice
and Bob: can Alice and Bob use a hybrid scheme?

I “O(
√

n) information bits per n channel uses”⇒ asymptotic
code rate zero. Normally, throughput improves as n→∞.
Here, is there an optimum value of n?

I The concepts of detectability and provability are related,
but they are not equivalent. Does this distinction matter?

I Some practical research problems: study typical
emanating channels, or study theoretical channel models
that may be forced into practice by a malware agent.

I Rateless coding schemes?
I Is there a reliable and deniable network coding scheme?
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Conclusion, Single-path communication

A covert entity Alice may use a communication channel to pass
information to an accomplice Bob in a way that cannot be
detected by a warden Willie.

1. undetectable low rate information transfer is feasible, but
there remain serious challenges for Alice and Bob, having
to do with implementation, with the set of parameters, and
with the set of assumptions.

2. For the warden Willie, there exist realistic scenarios that
are worse than those assumed in the literature, and this
creates extra problems.

3. There are few results available in the open literature about
the problem from Willie’s perspective, and more research
is required.
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Reliable, deniable, hidable communication over
Multipath networks

1. Multipath
2. Separation between Deniable and Hidable
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Reliable, deniable, hidable communication over
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Reliable, deniable, hidable communication over
Multipath networks

1. Reliable

P(T̂B = 1|T = 0)+P(T̂B = 0|T = 1)+P(M̂B 6= M|T = 1) small

2. Deniable
V(p(i)(), p̂W ()) small, where

V(p1(),p2()) = 1/2
∑

x

|p1(x)− p2(x)|

3. Hidable (Secure)

P(M̂W = m|W,T = 1)
P(M̂W = m|T = 1)

close to 1,∀m,∀W
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Multipath example 1
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Multipath example 2
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Multipath example 1, revisited
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Conclusion, Multipath communication

I Nonzero capacity possible for reliable, deniable, hidable
communication

I New area
I Many variations on the problem
I Research opportunities!!!
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