Introduction Single block hash Double block hash Hash based on fixed permutations

Hash Functions Based on Block Ciphers

Lars R. Knudsen

May 5, 2009

Block cipher - family of permutations

- \(e : \{0,1\}^\kappa \times \{0,1\}^n \rightarrow \{0,1\}^n, \quad m = \kappa + n > n \)
- each \(\kappa \)-bit key specifies bijective mapping on \(n \) bits
- \textbf{must} hold for all \(x \) and \(k \) that \(e_k^{-1}(e_k(x)) = x \).
- one-way function: given \(x \) and \(e_k(x) \), hard to find \(k \).

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
e \\
\text{y}
\end{array}
\]

DES & AES

DES = Data Encryption Standard
AES = Advanced Encryption Standard

<table>
<thead>
<tr>
<th>system</th>
<th>year</th>
<th>block size</th>
<th>key size</th>
</tr>
</thead>
<tbody>
<tr>
<td>DES</td>
<td>1977</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>AES</td>
<td>2001</td>
<td>128</td>
<td>128, 192 or 256</td>
</tr>
</tbody>
</table>
DES & AES: History

DES:
- Developed in early 70’s by IBM together with NSA
- 1977: publication of FIPS 46 (DES)

AES:
- Winner of open (world-wide) competition 1997-2001
- Designed by Daemen, Rijmen from Belgium
- 2009: most realistic key-recovery attack for both is an exhaustive search

- Digital signatures for efficiency:
 - “Let g be a one-way mapping from binary N-space to binary n-space...”. “Take the N bit message m and operate on it with g to obtain the n bit vector m'.”
 - “It must be hard even given m to find a different inverse image of m'”
 - “Finding such functions appears to offer little trouble”

Hash function using a block cipher

Why build on a block cipher?
- it’s natural!
- use existing technology
- transfer security (trust?!) to hash construction
- schemes “slow” (partly due to key-schedules)
- weaknesses of block cipher not relevant for encryption
Hash rate

- Given hash function built from block cipher
 \[e : \{0,1\}^\kappa \times \{0,1\}^n \rightarrow \{0,1\}^n \]

- Hash rate defined as
 \[\frac{\# \text{ n-bit blocks hashed}}{\# \text{ invocations of } e + \# \text{ key-schedules}} \]

Rabin, 1978

\[e : \{0,1\}^\kappa \times \{0,1\}^n \rightarrow \{0,1\}^n \]

\[m_i \]

\[h_{i-1} \]

\[e \]

\[h_i \]

- Rate \(= (\kappa/n)/(1+1) \)
- Yuval: collisions based on birthday paradox (79) (Merkle 79)
- Pre-images in approximately same time

Single block hash

- \(e : \{0,1\}^\kappa \times \{0,1\}^n \rightarrow \{0,1\}^n \)

- 12 secure ones (Preneel 93, Black et al 02), here three
 \[
 h_i = e_{m_i}(h_{i-1}) \oplus h_{i-1} \quad \text{Davies-Meyer}

 h_i = e_{h_{i-1}}(m_i) \oplus m_i \quad \text{Matyas-Meyer-Oseas}

 h_i = e_{h_{i-1}}(m_i) \oplus m_i \oplus h_{i-1} \quad \text{Preneel-Miyaguchi}
 \]

- Hash rates. About \(1/(1+1) \) (1/2 for DES and AES)
- Collisions (birthday attack) in \(2^n/2 \) operations

MD4-family

- MD4, Rivest 1990
- MD5, Rivest 1991
- SHA-0, 1993
- SHA-1, 1994
- all hash functions of Davies-Meyer form
- “block ciphers” with feed-forward
- hash rates for Davies-Meyer can be (arbitrarily) high
Double block hash - based on block ciphers

- Based on $e : \{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$
- Length of hash, $2n$ bits
- Aim: 2^n security level for collisions
 - Merkle, 1989
 - PBGV, QG, LOKI-DBH,, 1990s
 - Hirose, Nandi, 2005

Ideal cipher model

- Let $B_{n,k}$ be all block ciphers with a k-bit key and n-bit blocks,
 \[\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n \]
- There are $2^n! \approx 2^{n2^n}$ bijections on n bits
- It holds that
 \[|B_{n,k}| = \binom{2^n!}{2^k} \]
- An ideal cipher is randomly selected from $B_{n,k}$

Merkle’s double block schemes with DES (1989)

- “DES can be used to build a one-way hash function which is secure”
- if DES fails “it seems almost certain that some block cipher exist with the desirable properties”
- 128-bit hash function with proof of security in ideal cipher model
- collisions $\approx 2^{55}$, inconvenient block sizes, low hash rates
- “recent proposal from IBM looks very hopeful”, but no proof..
MDC-2

- Coppersmith, Meyer, Schilling et al, IBM, patent filed 1987
- designed for DES but can be used with any block cipher
- mapping from text to key: $\phi_1(\cdot), \phi_2(\cdot): \{0, 1\}^{64} \rightarrow \{0, 1\}^{56}$
- hash rate $1/(2+2)$ (1/4 for DES and AES)
- MDC-4: variant using four encryptions per block

MDC-2 used with DES and AES

<table>
<thead>
<tr>
<th></th>
<th>DES</th>
<th>AES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hash size</td>
<td>128</td>
<td>256</td>
</tr>
<tr>
<td>Preimage attack</td>
<td>2^{55}</td>
<td>2^{129}</td>
</tr>
<tr>
<td>2nd preimage attack</td>
<td>2^{55}</td>
<td>2^{129}</td>
</tr>
<tr>
<td>Collision attack</td>
<td>$2^{51.5}$</td>
<td>$2^{124.5}$</td>
</tr>
<tr>
<td>Hash rate</td>
<td>$1/4$</td>
<td>$1/4$</td>
</tr>
</tbody>
</table>

- For use with AES, “proof” that collision requires $> 2^{75}$ operations (Steinberger 2007)

Hirose’s double block mode 2006

Based on work by Nandi, 2005
$e: \{0, 1\}^\kappa \times \{0, 1\}^n \rightarrow \{0, 1\}^n$, $\kappa > n$, c nonzero constant

$h_1^i = e_{h_{i-1}^1}^\kappa (h_{i-1}^1 \oplus h_{i-1}^2)$
$h_2^i = e_{h_{i-1}^2}^\kappa (h_{i-1}^1 \oplus c) \oplus h_{i-1}^2 \oplus c$

- Collision requires 2^n operations assuming $e(\cdot, \cdot)$ is ideal cipher
- AES-256, hash rate 1/3, security level 2^{128} for collisions
Ideal cipher model?

- proofs in model give protection against generic attacks
- no real-life cipher is an ideal cipher; “nearly ideal” cipher can be strong for encryption but very weak when used for hashing
- attacker in control of key can invest time in finding key(s) with certain properties

Hash based on fixed permutations

- Preneel, 1992
- Knudsen, 2005. SMASH: $h_i = p(m_i \oplus h_{i-1}) \oplus \theta m_i \oplus h_{i-1}$
- Pramstaller et al, 2005. SMASH broken
- Shrimpton-Stamm, 2007, construction with three bijections. Collision in time $\approx 2^{n/2}$ but same for preimages.
- Rogaway-Steinberger, 2008, construction with three bijections. Collision in time $\approx 2^{n/2}$, preimage in time $\approx 2^{2n/3}$