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Latin Square (LS)
Definition
A Latin square of order n is an n-by-n array in which n distinct
symbols are arranged so that each symbol occurs once in each row
and column.

Examples

1 1 2
2 1

1 2 3
2 3 1
3 1 2

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

· · ·
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Orthogonal Latin Square
Definition
2 Latin squares of the same order n are said to be orthogonal if
when they overlap, each of the possible n2 ordered pairs occur
exactly once.

Example

1 2 3
2 3 1
3 1 2

⊥
1 2 3
3 1 2
2 3 1

⇒
11 22 33
23 31 12
32 13 21
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History

Leonhard Euler [Euler 1782]
• the problem of 36 officers, 6 ranks, 6 regiments
• he concluded that no two 6×6 LS are orthogonal

L. Euler,
Recherches sur une nouvelle espèce de quarrés magiques,
Verh. Zeeuwsch. Genootsch. Wetensch. Vlissengen, 9, pp.
85–239, 1782
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History
Euler’s Conjecture
No pair of LS of order n are orthogonal for n = 4k + 2, k ≥ 0.

• n = 2 :
1 2
2 1

2 1
1 2 ⇒ 12 21

21 12

• n = 6 : [Euler 1782]
No orthogonal LS for n = 6, although without a complete proof

• Construction: single-step for n odd, double-step for n = 4k > 0.
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History
Gaston Tarry, 1900-01

• [Tarry 1900-01] proved that no orthogonal LS of order 6 exists
• 2 years of Sundays

Bose, Shrikhande and Parker, 1959-60
• [Bose & Shrikhande 1959]: a pair of orthogonal LS of order 22.
• [Parker 1959]: a pair of orthogonal LS of order 10.
• [Bose, Shrikhande & Parker 1960]: counterexamples for all
n = 4k + 2 ≥ 10.

[Zhu Lie 1982]: the most elegant disproof of Euler’s conjecture
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A Resolution of Euler’s Conjecture

Orthogonal Latin Square
There exists a pair of orthogonal LS for all n > 0 with exception of
n = 2 and n = 6.
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Mutually Orthogonal LS (MOLS)
Definition
A set of LS that are pairwise orthogonal is called a set of mutually
orthogonal Latin squares (MOLS)

Theorem
N(n) ≤ n− 1. (N(n) : the number of MOLS that exist of order n.)

Theorem
If n is a power of a prime, then N(n) = n− 1.

Hint: Li(x, y) = x+ i ∗ y, where i, x, y ∈ Fn, field with n elements.
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Lower Bounds for N(n), n ≤ 100

0 1 2 3 4 5 6 7 8 9
0 1 2 3 4 1 6 7 8
10 2 10 5 12 3 4 15 16 3 18
20 4 5 3 22 6 24 4 26 5 28
30 4 30 31 5 4 5 6 36 4 5
40 7 40 5 42 5 6 4 46 7 48
50 6 5 5 52 5 6 7 7 5 58
60 4 60 4 6 63 7 5 66 5 6
70 6 70 7 72 5 5 6 6 6 78
80 9 80 8 82 6 6 6 6 7 88
90 6 7 6 6 6 6 7 96 6 8
100 8

www.ntnu.no Yanling Chen, On Orthogonal Latin Squares
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Some research problems

LS are widely used in cryptography, coding, experimental design
and entertainment.

• Construction of LS which have particular orders and differ
from the already known examples

• Classifying LS of a given order n

• Extending (or reducing) LS of order n1 to LS of order n2

• Completing partially filled matrices to LS (NP-complete)
• · · ·
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Quasigroup

Definition
A quasigroup is a set Q with a binary relation ∗ such that for all
elements a and b, the following equations have unique solutions:

a ∗ x = b and y ∗ a = b.

Fact
Latin squares ↔ multiplication tables of finite quasigroups
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MQQ: Multivariate Quadratic Quasigroup

• A quasigroup (Q, ∗) of order 2d, a ∗ b = c, a, b, c ∈ Q.

• under a fixed bijection ρ : Q �→ {0, · · · , 2d − 1},

ρ(a) = (x1, · · · , xd)
ρ(b) = (y1, · · · , yd)
ρ(c) = (f1, · · · , fd)

• a ∗ b = c ⇔ (x1, · · · , xd) ∗vv (y1, · · · , yd) = (f1, · · · , fd).
• fi are quadratic Boolean polynomials w.r.t x1, · · · yd.
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Motivation

Applications in MQQ based cryptosystems [Gligoroski et al. 08]
• Construction of MQQs of higher order and number of that
• Construction of MQQs of different types and number of that

Answers so far
• a randomized approach, of order ∼ 214 [Ahlawat et al. 09]
• by T-functions [Samardjiska et al. 2010]
• based on matrix algebra [Chen et al. 2010]
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Construction of MQQs
MQQ generating function
For any A such that correspondingly A∗

1,A
∗
2, satisfy that

det(A∗
1) = det(A∗

2) = 1,

the vector valued operation (x1, · · · , xd) ∗vv (y1, · · · , yd) equal to

A⊙



B1 ·




x1
...
xd







 ·



B2 ·




y1
...
yd







+ B1 ·




x1
...
xd



+ B2 ·




y1
...
yd



+ c

defines a MQQ for any nonsingular matrices B1,B2 and vector c.
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Construction of MQQs
From A to (A∗

1,A
∗
2)

Let A = [aij ]d×d, where aij = (f ij
1 , · · · , f ij

d ).

A∗
1 = I +



 (f ij
1 , · · · , f ij

d )



⊙




x1
...
xd



 ;

A∗
2 = I +



 (gij1 , · · · , gijd )



⊙




y1
...
yd



 .

• I: Identity matrix. ⊙: symbolic dot product.
• f ij

k = gikj , for 1 ≤ i, j, k ≤ d.
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Construction of orthogonal LS

Orthogonal Latin squares of order 2d

Consider two LS Q1 and Q2 defined by quasigroups

Q1 : (x1, · · · , xd) ∗1 (y1, · · · , yd) = (f1, · · · , fd);
Q2 : (x1, · · · , xd) ∗2 (y1, · · · , yd) = (g1, · · · , gd).

When they overlap, we have a new mapping defined by

(x1, · · · , xd) ∗vv (y1, · · · , yd) = (f1, · · · , fd, g1, · · · , gd).

If it is surjective, then we obtain an orthogonal Latin square.
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Linear orthogonal Latin squares
Applying the MQQ generating function: A = 0

Consider two LS Q1 and Q2 defined by

Q1 : (x1, · · · , xd) ∗1 (y1, · · · , yd) = B1x+ B2y + c1;

Q2 : (x1, · · · , xd) ∗2 (y1, · · · , yd) = B3x+ B4y + c2,

where x = (x1, · · · , xd)T and y = (y1, · · · , yd)T.

When they overlap

(x1, · · · , xd) ∗vv (y1, · · · , yd) =
�
B1 B2

B3 B4

�
·
�

x
y

�
+

�
c1
c2

�
.

If det
��

B1 B2

B3 B4

��
= 1, then Q1 and Q2 are orthogonal.
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Linear orthogonal Latin squares
Number of the linear orthogonal Latin squares pairs
By choosing appropriate B1,B2,B3,B4 and c, there are

Nd · 2d(d−1)/2 ·
d−1�

t=0

(2d − 2t)3 · 22d

pairs of orthogonal LS, where N0 = 1, Nd = (2d − 1)Nd−1 + (−1)d.

Hint: Det of the block matrix !

det

��
B1 B2

B3 B4

��
= det(Id − B−1

1 · B2 · B−1
4 · B3) = 1.
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Linear mutually orthogonal Latin squares

Recall N(n) = n− 1, for n = 2d

Consider the LS Qi, 0 ≤ i ≤ 2d − 2 defined by

Qi : (x1, · · · , xd) ∗i (y1, · · · , yd) = x+ Biy + ci

where x = (x1, · · · , xd)T and y = (y1, · · · , yd)T.

Then {Q0, Q1, · · · , Q2d−2} defines a complete set of MOLS of order
2d, if characteristic polynomial of B is a primitive polynomial of
degree d.
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Linear mutually orthogonal Latin squares

Existence of B
For a primitive polynomial f(x) = a0 + a1x+ · · ·+ ad−1xd−1 + xd−1,

let B =





0 0 0 · · · 0 a0
1 0 0 · · · 0 a1
0 1 0 · · · 0 a2
...

...
...

...
...

...
0 0 0 · · · 1 ad−1




.
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Linear mutually orthogonal Latin squares

Number of choices of B [Choudhury 2005]
Let φ(·) be Euler’s totient function. Number of choices of B is

d−1�

i=1

(2d − 2i) · φ(2
d − 1)

d
.
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Quadratic orthogonal Latin squares

1A =




(1 0 1) (0 1 1) (1 1 0)
(1 0 1) (0 1 1) (0 1 1)
(1 0 1) (0 1 1) (1 0 1)





2A =




(1 0 1) (1 1 0) (0 1 1)
(1 1 0) (1 1 0) (0 1 1)
(0 1 1) (1 1 0) (0 1 1)



 B =




0 0 1
1 0 0
0 1 1
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Quadratic orthogonal Latin squares

Q1 :
1A⊙




x1
x2
x3



 ·




y1
y2
y3



+




x1
x2
x3



+




y1
y2
y3





Q2 :
2A⊙




x1
x2
x3



 · B ·




y1
y2
y3



+




x1
x2
x3



+ B ·




y1
y2
y3
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Quadratic orthogonal Latin squares

Defined by (x1, x2, x3) ∗vv (y1, y2, y3) which is equal to

f1 = (x1 + x3)y1 + (x2 + x3)y2 + (x1 + x2)y3 + x1 + y1
f2 = (x1 + x3)y1 + (x2 + x3)y2 + (x2 + x3)y3 + x2 + y2
f3 = (x1 + x3)y1 + (x2 + x3)y2 + (x1 + x3)y3 + x3 + y3
g1 = (x1 + x2)y1 + (x2 + x3)y2 + (x1 + x2)y3 + x1 + y3
g2 = (x1 + x2)y1 + (x2 + x3)y2 + (x1 + x3)y3 + x2 + y1
g3 = (x1 + x2)y1 + (x2 + x3)y2 + x3 + y2 + y3

www.ntnu.no Yanling Chen, On Orthogonal Latin Squares
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Quadratic orthogonal Latin squares
Defined by (x1, x2, x3) ∗vv (y1, y2, y3) which is equal to

y1y2y3

x
1
x
2
x
3

* 0 1 2 3 4 5 6 7
0 (0, 0) (1, 5) (2, 1) (3, 4) (4, 2) (5, 7) (6, 3) (7, 6)
1 (1, 1) (3, 6) (4, 7) (6, 0) (2, 3) (0, 4) (7, 5) (5, 2)
2 (2, 2) (5, 3) (7, 4) (0, 5) (6, 7) (1, 6) (3, 1) (4, 0)
3 (3, 3) (7, 0) (1, 2) (5, 1) (0, 6) (4, 5) (2, 7) (6, 4)
4 (4, 4) (0, 7) (6, 5) (2, 6) (7, 1) (3, 2) (5, 0) (1, 3)
5 (5, 5) (2, 4) (0, 3) (7, 2) (1, 0) (6, 1) (4, 6) (3, 7)
6 (6, 6) (4, 1) (3, 0) (1, 7) (5, 4) (7, 3) (0, 2) (2, 5)
7 (7, 7) (6, 2) (5, 6) (4, 3) (3, 5) (2, 0) (1, 4) (0, 1)
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Conclusions & Further work
Results

• MQQ generating function
• Construction of (linear) orthogonal Latin squares
• Construction of the complete set of (linear) MOLS
• Quadratic orthogonal Latin squares

On the way...

• Construction of quadratic orthogonal Latin squares
• Applications in cryptography and error detection/correction
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