
Key Establishment

Colin Boyd

Department of Telematics
NTNU

May 2014

1 / 57

Designing a Protocol

Outline

1 Designing a Protocol

2 Some Protocol Goals

3 Some Key Agreement Protocols
MTI Protocols
Some Standard Protocols

2 / 57

Designing a Protocol

Designing a Protocol

We choose a common scenario. There are a wide variety of
alternatives as discussed later.

A set of users, any two of whom may participate in the protocol.
An entity called the server which will also engage in the protocol.
All users trust the server to execute the protocol faithfully and not
to engage in any other activity which will deliberately compromise
their security.

3 / 57

Designing a Protocol

Our protocol involves three entities or principals.
Two users whom we denote A and B (often expanded to Alice and
Bob)
The trusted server S.

The protocol is used to establish a new secret key KAB to be used for
subsequent secure communication. The role of S is to generate KAB
and transport it to A and B. The aims of the protocol are as follows.

At the end of the protocol A and B should both know the value of
KAB.
A and B should both know the identities of all other principals who
know KAB.
A and B should know that KAB is newly generated.

4 / 57

Designing a Protocol

Protocol 1

S

A B

1. A,B �
�

�
��

2. KAB

-3. KAB,A

��
⌫

��
⌫

��
⌫�

�
�
��✓

The protocol consists of three messages. User A contacts S by
sending the identities of the two parties who are going to share the
new session key; S returns the key KAB to A; A passes KAB on to B.

5 / 57

Designing a Protocol

Confidentiality

The problem with Protocol 1 is that the session key KAB must be
transported to A and B but to no other entities.

Security Assumption
The adversary is able to eavesdrop on all messages sent in a
cryptographic protocol.

The need to keep KAB confidential leads to Protocol 2. We will make
the normal assumption that the server S initially shares a long-term
secret key with each user of the system.

KAS is shared between S and A.
KBS is shared between S and B.
KAB is the new session key generated by S.
{X}K denotes encryption of X using key K .

6 / 57

Designing a Protocol

Cryptographic algorithms

It is common when considering cryptographic protocols to ignore
the details of the cryptographic algorithms involved.
When we come to look at formal models we need to know
precisely what encryption properties are provided.
For now assume that a passive eavesdropper will gain nothing
because KAB may only be read by the legitimate recipients, since
only they have the keys required to decrypt.

7 / 57

Designing a Protocol

Protocol 2

S

A B

1. A,B

2. {KAB}KAS , {KAB}KBS

3. {KAB}KBS ,A

⇢⇡
�⇠

��
�⌧

��
�⌧�

�
�
�
�
��✓
�

�
�
�

�
��

-

The session key is now protected during its transmission to each party.

8 / 57

Designing a Protocol

Authentication

Protocol 2 is just as insecure as Protocol 1 but for a completely
different reason.
Protocol 2 lacks information about who else has the key is not
protected. The adversary is not able just to eavesdrop on
messages sent; he can also capture messages and alter them.

Security Assumption
The adversary is able to alter all messages sent in a cryptographic
protocol using any information available to him. In addition the
adversary can re-route any message to any other principal. This
includes the ability to generate and insert completely new messages.

9 / 57

Designing a Protocol

The reason for the difficulty in designing authentication protocols now
begins to clarify.

In distinction to ordinary communications protocols there is an
unknown and unpredictable malicious principal involved.
Although there are very few messages involved in a legitimate run
of the protocol, there are an infinite number of variations in which
the adversary participates.
Each variation must satisfy the protocol’s security requirements.

10 / 57

Designing a Protocol

Attack on Protocol 2

S

A B

�
�
�
�
�
��✓

1. A,B �
�

�
�
�

��

2. {KAB}KAS , {KAB}KBS

3. {KAB}KBS ,A- C 3’. {KAB}KBS ,D-

��
�⌧

��
�⌧

��
�⌧

��
�⌧

11 / 57

Designing a Protocol

Adversary C intercepts the message from A to B and substitutes
C’s name for A’s (where C could be any identity including C’s
own). The consequence is that B believes that he is sharing the
key with C whereas he is in fact sharing it with A.
The subsequent results may include such actions as B giving
away information to A which should only have been shared with C.
Notice that C does not obtain KAB but we still regard the protocol
as broken since it does not satisfy our requirement that the users
should know who else knows the session key.

12 / 57

Designing a Protocol

Alternative attack on Protocol 2

S

A C

1. A,B
2’. {KAB}KAS , {KAB}KCS

-3. {KAB}KCS ,A

C

⌦
⌦
⌦
⌦⌦�

⌦
⌦

⌦
⌦⌦�

1’. A,C
2. {KAB}KAS , {KAB}KCS⌦

⌦
⌦
⌦⌦�

⌦
⌦

⌦
⌦⌦�

⇢⇡
�⇠

⇢⇡
�⇠

⇢⇡
�⇠

⇢⇡
�⇠

13 / 57

Designing a Protocol

C alters the message from A to S so that S encrypts the key KAB
with C’s key KCS instead of B’s key.
Since A cannot distinguish between encrypted messages meant
for other principals she will not detect the alteration.
C simply collects the message from A intended for B so that B will
not detect any anomaly.

The result of this attack is that A will believe that the protocol has been
successfully completed with B whereas in fact C knows KAB and so
can masquerade as B as well as learn all the information that A
intends to send to B.

14 / 57

Designing a Protocol

In contrast to the previous attack this one will only succeed if C is
a legitimate user known to S. This is a realistic assumption - it is
well documented that insiders are often more of a threat than
outsiders.
To overcome the attack the names of the users need to be bound
cryptographically to the value of KAB. This leads to Protocol 3
where the names of A and B are included in the encrypted
messages received from S.
The encryption algorithm used by S must prevent the possiblity to
alter the value of the encrypted messages. Thus authenticated
encryption must be used.

15 / 57

Designing a Protocol

Protocol 3

S

A B

1. A,B

2. {KAB,B}KAS , {KAB,A}KBS

3. {KAB,A}KBS ,A

"!

"!

"!

-

�
�
�
�
�
�
��✓
�
�

�
�
�

�
��

16 / 57

Designing a Protocol

Replay

The next problem stems from the difference in quality between the
long-term keys shared initially with S, and the session key KAB
generated for each protocol run.

A new key is required for each session.
Session keys are expected to be vulnerable to attack.
Session keys will be likely to be used with a variety of data of
regular formats, making them targets for cryptanalysis.
Session keys may be discarded carelessly after the session is
closed.

17 / 57

Designing a Protocol

A whole class of attacks is based on the notion that old keys may
be replayed in a subsequent session.
Notice that even if A is careful in the management of session keys
used by her, compromise of a session key by B may still allow
replay attacks when A communicates with B.

Security Assumption
An adversary is able to obtain the value of the session key KAB used in
any (sufficiently old) previous run of the protocol.

18 / 57

Designing a Protocol

Attack on Protocol 3

C

A B

�
�
�
�
�
�
��✓

1. A,B �
�

�
�

�
�
��

2. {K 0
AB,B}KAS , {K 0

AB,A}KBS

-3. {K 0
AB,A}KBS ,A"!

"!

"!

The key K 0
AB is an old session key used by A and B in a previous

session; C can be expected to know the value of K 0
AB.

19 / 57

Designing a Protocol

Avoiding replay

There are various mechanisms that may be employed to allow
users to check that session keys have not been replayed. We will
improve our protocol using challenge-response.
A will generate a new random value NA at the start of the protocol
and send this to S with the request for a new key.
If NA is subsequently received by A bound together with the
session key, then A can deduce that the key has not been
replayed.

It is not convenient for B to send his own nonce to S. A possible
solution is that A can pass on her assurance to B; once A is satisfied
that the key is new then she can respond to a nonce NB generated by
B and sent by B protected by KAB itself.

20 / 57

Designing a Protocol

Protocol 4 (Needham–Schroeder)

S

A B

�
�
�
�
�
�
��✓

1. A,B,NA �
�
�

�
�
�

��

2. {KAB,A,B,NA}KAS , {KAB,A,B}KBS

-3. {KAB,A,B}KBS ,A

�
-

4. {NB}KAB

5. {NB � 1}KAB

"!

"!

"!

21 / 57

Designing a Protocol

Protocol 4 is essentially the same as one of the most celebrated in the
subject of key establishment protocols.

This is the Needham and Schroeder protocol published in 1978.
It has been the basis for a whole class of related protocols.
Unfortunately it is vulnerable to an attack due to Denning and
Sacco in 1981.
The assumption that A will act properly in assuring B that the key
is new is unfounded. Since A is any user, and could be the
adversary C, this assumption is unrealistic.

22 / 57

Designing a Protocol

Denning–Sacco attack on Protocol 4

C B

-
3. {K 0

AB,A,B}KBS ,A

�

-

4. {NB}K 0
AB

5. {NB � 1}K 0
AB"!

"!

Once the attack has been spotted, it is relatively easy to suggest
ways of overcoming it. We dispense with the assumption that it is
inconvenient for B to send his challenge to S as well as A.
Protocol 5 is secure if the cryptographic algorithm used has the
properties of both confidentiality and integrity, and the server S
acts correctly.

23 / 57

Designing a Protocol

Protocol 5

S

A B

�
�
�
�
�
�
��✓

2. A,B,NA,NB �
�

�
�

�
�
��

3. {KAB,A,B,NA,NB}KAS , {KAB,A,B,NA,NB}KBS

�

-

1. B,NB

4. {KAB,A,B,NA,NB}KBS"!

"!

"!

24 / 57

Designing a Protocol

In Protocol 5 both parties send their own nonce to S who returns it
bound to the key.
Protocol 5 can be proven secure (next lecture).
Notice that in Protocol 4 A could verify both

the key is new and known only by A, B and S
B has in fact received the key.

In Protocol 5 neither A nor B can deduce at the end of a
successful protocol run that the other has actually received KAB.

25 / 57

Some Protocol Goals

Outline

1 Designing a Protocol

2 Some Protocol Goals

3 Some Key Agreement Protocols
MTI Protocols
Some Standard Protocols

26 / 57

Some Protocol Goals

Protocol architectures

In the sample protocol above, the key was generated by a trusted
server. In other protocols one or more of the users may generate the
key. It is common to consider two cases.

Key Transport Protocols Here the key is generated by one of the
principals and transferred to the other(s).

Key Agreement The principals both (all) contribute information which
together establishes the key.

Key transport is commonly associated with symmetric-key
protocols with an online server.
Key agreement is commonly associated with asymmetric-key
protocols without a server.
None of these situations is necessary.

27 / 57

Some Protocol Goals

Basic properties for key establishment

Basic goals:
parties should accept the same key if adversary is benign;
adversary cannot obtain the session key (often called implicit key
authentication).

Adversary capabilities:
controls the network;
reveal session keys from other (non-target) sessions;
corrupt parties not from other (non-target) sessions to obtain
long-term keys.

28 / 57

Some Protocol Goals

Diffie–Hellman key agreement

Diffie–Hellman key agreement was published in 1976.
Computations takes place in a suitable group with element g of
large order.
Principals A and B choose random values rA and rB and exchange
values grA and grB .
The shared secret is ZAB = grArB .
The unauthenticated values rA and grA are known as ephemeral
private and public keys.
The session key KAB is formed from the shared secret using a key
derivation function.

29 / 57

Some Protocol Goals

Key derivation functions

Many sources do not specify the key derivation function. The
IEEE P1363 standard as well as NIST SP-800A (2007) specifies
the session key as

KAB = H(ZAB, Info)

where H is SHA-1 and Info is a set of optional data including an
algorithm identifier for the session key, a counter, public
information of A or B, and any other shared data.
In formal models H is often modelled as a random oracle.
Standard model proofs may require H to be specified using a
randomness extractor.

30 / 57

Some Protocol Goals

Advanced properties for key agreement

Forward secrecy Compromise of long term keys of both parties after
session is complete should not compromise session key.

Key compromise impersonation (KCI) resistance The adversary
should not be able to masquerade to A as any different
party B.

Leakage of ephemeral secrets (LES) Compromise of ephemeral keys
of target session should not compromise session key.

31 / 57

Some Protocol Goals

Advanced properties for key agreement

Forward secrecy Compromise of long term keys of both parties after
session is complete should not compromise session key.

Key compromise impersonation (KCI) resistance The adversary
should not be able to masquerade to A as any different
party B.

Leakage of ephemeral secrets (LES) Compromise of ephemeral keys
of target session should not compromise session key.

32 / 57

Some Protocol Goals

Advanced properties for key agreement

Forward secrecy Compromise of long term keys of both parties after
session is complete should not compromise session key.

Key compromise impersonation (KCI) resistance The adversary
should not be able to masquerade to A as any different
party B.

Leakage of ephemeral secrets (LES) Compromise of ephemeral keys
of target session should not compromise session key.

33 / 57

Some Protocol Goals

Weak forward secrecy

A weaker form of forward secrecy is provided when the adversary
is not allowed to be active in the target session.
There is a common myth that full forward secrecy is not possible
for a one-round (two message) key agreement protocol.
It is true that one-round protocols with full forward secrecy do not
exist in strong models.

34 / 57

Some Key Agreement Protocols

Outline

1 Designing a Protocol

2 Some Protocol Goals

3 Some Key Agreement Protocols
MTI Protocols
Some Standard Protocols

35 / 57

Some Key Agreement Protocols

Notation

p A large prime (usually at least 1024 bits).
q A prime (usually of at least 160 bits) with q|p � 1.
G A subgroup of Z⇤

p often of order q.
g A generator of G.
rA, rB Random integers chosen by A and B respectively.
tA, tB Ephemeral public keys: typically tA = grA and tB = grB .
xA, xB Private long-term keys of A and B respectively.
yA, yB Public keys of A and B: yA = gxA and yB = gxB .
ZAB Shared secret calculated by the principals.
SAB Static Diffie-Hellman Key of A and B: SAB = gxAxB .

36 / 57

Some Key Agreement Protocols MTI Protocols

MTI protocols

A number of protocols were suggested by Matsumoto, Takashima
and Imai in 1986, which incorporate authentication into the
Diffie-Hellman exchange in an elegant manner.
Three classes of MTI protocols were proposed. They are all of the
same basic format; they involve only two messages and achieve
implicit key authentication but no key confirmation.
Basic protocols are vulnerable to some instructive attacks.

37 / 57

Some Key Agreement Protocols MTI Protocols

Three types of MTI protocol

Computed Computed
Type zAB zBA ZAB by A by B
A(0) grA grB gxArB+xBrA zxA

BAyrA
B zxB

AByrB
A

B(0) yrA
B yrB

A grA+rB zx�1
A

BA grA zx�1
B

AB grB

C(0) yrA
B yrB

A grArB zx�1
A rA

BA zx�1
B rB

AB

In the table zAB and zBA are the messages sent from A to B, and
from B to A, respectively.
For each basic protocol there are an infinite number of derived
protocols in that type.

38 / 57

Some Key Agreement Protocols MTI Protocols

Small subgroup attacks

These attacks are possible if the base point g is of composite
order and allow an active adversary to force the shared secret into
a small subgroup generated by a power of g.
This attack applies to the MTI protocol C(0) in the situation that
the group G is the whole of Z⇤

p as originally proposed.
We suppose that the factorisation of p � 1, which is the order of G,
is known to the adversary.

39 / 57

Some Key Agreement Protocols MTI Protocols

Small subgroup attack on MTI C(0)

The attack is easiest in the case that p � 1 has a very small factor
r ; let us write w = (p � 1)/r .
The attack works by raising the exchanged messages to the
power w which moves these elements into the small subgroup of
G of order r .
The adversary C plays in the middle between A and B.

1. A ! CB : yrA
B

1’. CA ! B : yrAw
B

2. B ! CA : yrB
A

2’. CB ! A : yrBw
A

40 / 57

Some Key Agreement Protocols MTI Protocols

The shared secret calculated by A and B is

ZAB = grBrAw .

Since this is an element in the small subgroup, C can easily find
the shared secret by exhaustive search. Notice that in the extreme
case r = 1 and then w = p � 1 so the element received by both A
and B is 1.
If g is chosen to have order q which is prime, these attacks do not
apply, as long as it is ensured that exchanged elements are not
the identity in the group.

41 / 57

Some Key Agreement Protocols MTI Protocols

Lim and Lee attack on MTI Protocols

Lim and Lee (1997) devised attacks on interactive protocols that
work in prime order subgroups. Their attack is applicable to MTI
variants in which G is a prime order subgroup.
The idea of the attack is that the adversary will send in message 1
a value that is not in G, and consequently the key calculated by B
will give away information about B’s long-term secret key xB.
In an interesting echo of the prime order subgroup attack, this
requires that (p � 1)/q consist of a product of small factors.

42 / 57

Some Key Agreement Protocols MTI Protocols

Lim and Lee attack on MTI protocol A(0)

1. A ! B : �tA
2. B ! A : tB

Suppose that � is an element whose order is a small factor r of
p � 1.
The shared secret is calculated by B as ZBA = (�tA)xB yrB

A . Since
txB
A = yrA

B and yrB
A = txA

B , A can calculate ZBA/�
xB and there are

only r possible values for �xB . A can try out each of these in turn.
There are a number of ways that A is able to know if the correct
value has been found.
To complete the attack A repeats this procedure with new factors
of (p � 1)/q in place of r until the value of xB is obtained.

43 / 57

Some Key Agreement Protocols MTI Protocols

Avoiding the attack of Lim and Lee

1 Each recipient of a protocol message can check that the message
lies in G. The cost of this is an exponentiation which is a
significant extra computational burden.

2 Choose the prime p so that (p � 1)/q has no small factors apart
from 2. In this case the attack will give away one bit of information
about the principals’ secrets.

44 / 57

Some Key Agreement Protocols MTI Protocols

Unknown key-share attacks

These attacks work if the adversary can make one party complete
the protocol and believe the key is shared with B while it is shared
with a different party.
Menezes, Qu and Vanstone discovered unknown key-share
attacks on all the classes of MTI protocols.
The attacks require the adversary C to obtain a certificate for a
long-term key yC which is related to the public key of A by the
equation

yC = yxC
A = gxAxC .

Note that C cannot know the corresponding private key xAxC of
this public key.

45 / 57

Some Key Agreement Protocols MTI Protocols

Unknown key-share attack on MTI protocol B(0)

1. A ! CB : yrA
B

1’. C ! B : yrA
B

2. B ! C : yrB
C

2’. CB ! A : (yrB
C)x�1

C = yrB
A

The shared secret calculated by A is (yrB
A)x�1

A grA = grB+rA while B
calculates (yrA

B)x�1
B grB = grA+rB to get the same value.

Although A and B both have the same session key, A believes it to
be shared with B, while B believes it to be shared with C.

46 / 57

Some Key Agreement Protocols MTI Protocols

Avoiding unknown key-share attacks

Certifiers of public keys could ensure that each entity is in
possession of the corresponding private key before a certificate is
issued.
Key confirmation can defeat the attack. The confirmation
messages should include the identities of both principals.
Include both principal identities within the key derivation function.
If the function used is collision resistant, when A believes the key
is shared with C she will always derive a different key from B who
believes the key is shared with A.

47 / 57

Some Key Agreement Protocols MTI Protocols

Key compromise impersonation

Suppose the long term key of A is compromised by an adversary.
A key compromise impersonation (KCI) attack is one in which the
adversary is able to masquerade to A as another party.
Consider the protocol MTI C(0). If the adversary C knows xA then
he can use the first message sent by A to construct an attack.

1. A ! CB : yrA
B

2. CB ! A : yxArC
B

A then calculates the shared secret as yrArC
B which can also be

calculated by C. Therefore protocol C(0) is vulnerable to key
compromise impersonation.

48 / 57

Some Key Agreement Protocols Some Standard Protocols

Outline

1 Designing a Protocol

2 Some Protocol Goals

3 Some Key Agreement Protocols
MTI Protocols
Some Standard Protocols

49 / 57

Some Key Agreement Protocols Some Standard Protocols

Signed Diffie–Hellman

A B

rA 2R Zq

tA = grA
tA������! rB 2R Zq

tB = grB

Verify signature
tB,SigB(tB, tA,A) ������ ZAB = t rB

A

ZAB = t rA
B

SigA(tA, tB,B)
������! Verify signature

50 / 57

Some Key Agreement Protocols Some Standard Protocols

The Unified model

This protocol, and the MQV protocol below, are part of the IEEE
P1363 standard and NIST SP 800-56A (2007).
The name of the protocol comes from the unification of the static
and ephermeral Diffie-Hellman keys.
The protocol is attributed to Ankney, Johnson and Matyas.
The shared secret is the concatenation of the static and
ephemeral Diffie-Hellman keys: ZAB = grArB k gxAxB .

51 / 57

Some Key Agreement Protocols Some Standard Protocols

Unified model protocol

A B
rA 2R Zq

tA = grA
tA�! rB 2R Zq

tB = grB

tB �
ZAB = t rA

B k SAB ZAB = t rB
A k SAB

The session key for UM in NIST standard is defined as
K = KDF (ZAB k A k B k . . .) for a suitable key derivation function
KDF .

52 / 57

Some Key Agreement Protocols Some Standard Protocols

Before accepting the shared key A must make the following checks. B
makes the analogous checks.

1 1 < tB < p. In particular, degenerate values such as 0 and p
should not be allowed.

2 tq
B mod p = 1. This ensures that ZAB 2 G as long as A has chosen

tA correctly.
3 ZAB 6= 1. Together with the previous check this ensures that ZAB

has order q so preventing any small order subgroup attacks.

53 / 57

Some Key Agreement Protocols Some Standard Protocols

(H)MQV protocol

Protocol due originally to Menezes, Qu and Vanstone (1995) with
later improvements including Law and Solinas with these authors.
MQV makes use of a special operation on elements of Zp which
limits the length to a fixed size w . Typically w would be 80. The
result of the operation on t 2 Zp is denoted t = t mod 2w + 2w .
The shared secret is: ZAB = gSASB mod p where
SA = rA + tAxA mod q and similarly SB = rB + tBxB mod q.
HMQV due to Krawczyk (2005) is a variant protocol which defines
tA = H(tA,B) and tB = H(tB,S) where H is a random oracle.

54 / 57

Some Key Agreement Protocols Some Standard Protocols

(H)MQV protocol

A B
rA 2R Zq

tA = grA
tA�! rB 2R Zq

tB = grB

tB �
SA = rA + tAxA mod q SB = rB + tBxB mod q

ZAB = (tBy tB
B)SA ZAB = (tAy tA

A)SB

The same checks by each principal as in the Unified Model are
required before accepting the shared key.
The session key for HMQV is defined as K = KDF (ZAB) for a
suitable key derivation function KDF .

55 / 57

Some Key Agreement Protocols Some Standard Protocols

NAXOS protocol

A B
rA {0, 1}k

hA = H1(xA, rA)

tA = ghA
tA�! rB {0, 1}k

hB = H1(xB, rB)
tB = ghB

tB �
ZAB = H2(t

xA
B , yhA

B , thA
B ,A,B) ZAB = H2(y

hB
A , txB

A , thB
A ,A,B)

Note that ZAB is the session key.
NAXOS allows ephemeral secrets to be revealed even in the
target session.

56 / 57

Some Key Agreement Protocols Some Standard Protocols

Comparison

Properties ! Fwd. Resists LES Exponentiations
Protocol secrecy KCI off-line on-line
Signed DH Yes Yes No 1 1 + sig
UM Weak No Yes 2 1
HMQV Weak Yes Yes 1 1.5
NAXOS Weak Yes Yes 2 2

Off-line exponentiations can be performed before the message
exchange begins, assuming public keys are available.
For signed Diffie–Hellman “sig” means both signature generation
and verification
Some properties require validity checking

57 / 57

Proofs for Key Establishment

Colin Boyd

Department of Telematics
NTNU

May 2014

1 / 36

Motivation

The need for formality

Until the 1990s it was common for the security goals of key
establishment (KE) protocols to be defined informally (e.g. entity
authentication, implicit key authentication, freshness, forward
secrecy, resistance to dictionary attacks)
Hence the security analysis of these protocols has also been
informal.
Many published protocols have been found flawed years after their
publication.
As with other cryptographic primitives, we would like to know
precisely the security properties that KE protocols achieve and the
underlying computational assumptions.

2 / 36

Motivation

Computational security of KE protocols

Initiated by Bellare and Rogaway (1993). Followed up by:
server-based protocols: Bellare–Rogaway (1995)
public-key based key transport: Blake-Wilson–Menezes (1997)
key agreement protocols: Blake-Wilson–Menezes (1998)
password-based protocols: Bellare–Pointcheval–Rogaway (2000)
group key agreement: Bresson–Chevassut–Pointcheval (2001)
RFID protocols: Vaudenay (2007)
browser-based protocols: Gajek, Manulis, Sadeghi, Schwenk
(2008)

At the same time many model variants and enhancements were
proposed.

3 / 36

Motivation

Computational models

The methodology follows the common computational reductionist
approach.

Adversary model - What can the adversary do?
Notions of security - When does the adversary break the security
of the protocol?
Proofs by reduction – if the adversary breaks the security of the
protocol, then the adversary can break some (assumed)
intractable computational problem.

4 / 36

Motivation

Symbolic models

There is a large alternative body of work outside the cryptographic
community using idealized notions of cryptography.

Often credited back to 1983 paper of Dolev and Yao
Often use tool support for automatic analysis of protocols
Applicable to both model checking and theorem proving

approaches.
Modern tools in this mould include ProVerif and Scyther
Recent trends include unification of computational models and
machine support (e.g. CryptoVerif).

In these slides we only look at computational models.

5 / 36

Bellare and Rogaway Computational Security Model

Bellare and Rogaway’s security model

The adversary controls all the communications that take place and
does this by interacting with a set of oracles, each of which
represents an instance of a principal in a specific protocol run.
The principals are defined by an identifier U from a finite set and
an oracle ⇧s

U

represents the actions of principal U in the protocol
run indexed by integer s.
Principals’ long-term keys are initialised using a key generation
algorithm LL.
Interactions with the adversary are called oracle queries.
Security of protocols is defined in terms of indistinguishability of
established session keys from random keys.

6 / 36

Bellare and Rogaway Computational Security Model

The adversary is computationally bounded to probabilistic
polynomial time.

✬

✫

✩

✪

• The adversary is computationally bounded to probabilistic
polynomial time.

A

1
1U∏ 1

1U∏ 1
2U∏ 1

1U∏ 1
nU∏

9

7 / 36

Bellare and Rogaway Computational Security Model

Oracle queries

Send(U, s,M) Send message M to oracle ⇧s

U

Reveal(U, s) Reveal session key (if any) accepted by
⇧s

U

Corrupt(U,K) Reveal state of U and set long-term key
of U to K

Test(U, s) Attempt to distinguish session key ac-
cepted by oracle ⇧s

U

This list applies to the Bellare and Rogaway’s 1995 paper; additional
queries are appropriate in other models.

8 / 36

Bellare and Rogaway Computational Security Model

Send(U, s,M)

Allows the adversary to make the principals run the protocol
normally. The oracle ⇧s

U

will return to the adversary the next
message that an honest principal U would do if sent message M

according to the conversation so far.
If ⇧s

U

accepts the session key or halts this is included in the
response. The adversary can also use this query to start a new
protocol instance by sending a special message ‘start: U

0’ in
which case U will start a protocol run with a new index s and
partner ID U

0.

9 / 36

Bellare and Rogaway Computational Security Model

Reveal(U, s)

This query models the adversary’s ability to find old session keys. If a
session key K

s

has previously been accepted by ⇧s

U

then it is returned
to the adversary. An oracle can only accept a key once (of course a
principal can accept many keys modelled in different oracles).

Corrupt(U,K)

This query models insider attacks by the adversary. The query returns
the oracle’s internal state and sets the long-term key of U to be the
value K chosen by the adversary. The adversary can then control the
behaviour of U with Send queries.

10 / 36

Bellare and Rogaway Computational Security Model

Reveal(U, s)

This query models the adversary’s ability to find old session keys. If a
session key K

s

has previously been accepted by ⇧s

U

then it is returned
to the adversary. An oracle can only accept a key once (of course a
principal can accept many keys modelled in different oracles).

Corrupt(U,K)

This query models insider attacks by the adversary. The query returns
the oracle’s internal state and sets the long-term key of U to be the
value K chosen by the adversary. The adversary can then control the
behaviour of U with Send queries.

11 / 36

Bellare and Rogaway Computational Security Model

Test(U, s)

Once the oracle ⇧s

U

has accepted a session key K

s

the adversary can
attempt to distinguish it from a random key as the basis of determining
security of the protocol. A random bit b is chosen; if b = 0 the K

s

is
returned while if b = 1 a random string is returned from the same
distribution as session keys.

In the 1993 and 1995 papers of Bellare–Rogaway it was stated that
Test(U, s) must be the final query of the adversary. This condition is
not a good model for security and was later removed.

12 / 36

Bellare and Rogaway Computational Security Model

Test(U, s)

Once the oracle ⇧s

U

has accepted a session key K

s

the adversary can
attempt to distinguish it from a random key as the basis of determining
security of the protocol. A random bit b is chosen; if b = 0 the K

s

is
returned while if b = 1 a random string is returned from the same
distribution as session keys.

In the 1993 and 1995 papers of Bellare–Rogaway it was stated that
Test(U, s) must be the final query of the adversary. This condition is
not a good model for security and was later removed.

13 / 36

Bellare and Rogaway Computational Security Model

Adversary’s advantage

Security of a KE protocols is defined based on a game played by
the adversary A.
Success of the adversary is measured in terms of its advantage in
distinguishing the session key from a random key after running the
Test query. If we define Good-Guess to be the event that the
adversary guesses correctly whether b = 0 or b = 1 then

AdvA =

����Pr[Good-Guess]� 1
2

���� .

14 / 36

Bellare and Rogaway Computational Security Model

Freshness

The Test query may only be used for a fresh oracle. An oracle is said
to be fresh when:

it has accepted a session key, and
neither itself nor the partner oracle have had a Corrupt or Reveal
query.
The way of defining partner oracles has varied in different papers.
We will assume existence of a session identifier (SID) which is a
unique value known to each partner.
Partners must both have accepted the same session key, have the
same SID, and recognise each other as partners.

15 / 36

Bellare and Rogaway Computational Security Model

The security game

The game played by the adversary A consists of three stages:
Stage 1: All principals are initialised with long-term keys using the
key generation algorithm LL. Any public data (e.g. public keys)
are handed to A , who the interacts with the principals via queries.
Stage 2: A chooses a fresh oracle ⇧s

U

i

and queries it with
Test(U

i

, s). A key K

b

is returned to the adversary.
Stage 3: A is allowed to continue asking queries to the oracles,
but is not allowed to reveal the test session or corrupt the
principals involved in the test session. At the end of this stage A
outputs its guess b

0.

16 / 36

Bellare and Rogaway Computational Security Model

Stage 1✬

✫

✩

✪

A
1

1U∏

1
2U∏

1
nU∏

LL

Figure 1: Stage 1

18

17 / 36

Bellare and Rogaway Computational Security Model

Stage 2✬

✫

✩

✪

1
1U∏

1
2U∏

1
nU∏

s
U i

∏

∈∈∈∈

A

Figure 2: Stage 2

19

18 / 36

Bellare and Rogaway Computational Security Model

Stage 3✬

✫

✩

✪

A
1

1U∏

1
2U∏

1
nU∏

’

Figure 3: Stage 3

20

19 / 36

Bellare and Rogaway Computational Security Model

Definition of security

We say that an adversary is benign if it simply relays messages
between oracles.
Bellare and Rogaway define a protocol in this model to be secure
if:

1 when the protocol is run by a benign adversary both principals will
accept the same session key.

2 AdvA is negligible for all (probabilistic polynomial time) adversaries.

20 / 36

Bellare and Rogaway Computational Security Model

The first condition is a completeness criterion that guarantees that
the protocol will complete as expected in normal circumstances.
The second condition says that the adversary is unable to find
anything useful about the session key.
Although this definition appears to be concerned only with key
confidentiality it does imply key authentication.

Suppose that the session key is known to an oracle ⇧s

U

different
from that recorded in an oracle ⇧t

U

0 to be tested.
⇧s

U

is not the partner of ⇧t

U

0 and so it can be opened by the
adversary and so the protocol cannot be secure.

21 / 36

Example: Proof of a Server-based Key Distribution Protocol

Example

In their 1995 paper Bellare and Rogaway proved the security of a
server based protocol, similar to that examined earlier.
A trusted server generates a random session key K

AB

and sends
it securely to two principals protected with long-term keys.
The protocol uses a symmetric-key encryption algorithm and a
MAC algorithm.
We show that as long as the encryption mechanism and MAC are
secure then the adversary cannot obtain a significant advantage,
hence the protocol is also secure.

22 / 36

Example: Proof of a Server-based Key Distribution Protocol

3PKD Protocol

1. A ! B : A,B,N
A

2. B ! S : A,B,N
A

,N
B

3. S ! A : N

B

, E
K

AS

(K
AB

),M
K

0
AS

(A,B,N
A

,N
B

, E
K

AS

(K
AB

))

4. S ! B : E
K

BS

(K
AB

),M
K

0
BS

(A,B,N
A

,N
B

, E
K

BS

(K
AB

))

Keys K

AS

and K

0
AS

are independent.
(E(·),D(·)) is an IND-CPA symmetric-key encryption scheme.
M(·) is a MAC unforgeable under adaptive chosen-message
attacks (UF-CMA).
We use the value N

A

k N

B

as the session identifier.

23 / 36

Example: Proof of a Server-based Key Distribution Protocol

IND-CPA symmetric encryption

Recall the game played between an adversary A and a challenger C. C
chooses a random key K .

1 Find stage: A can ask for the encryption of any message m of its
choice. C replies with E

K

(m)
2 A chooses any two equal length messages m0 and m1. C chooses

random bit b 2
R

{0, 1} and gives c = E
K

(m
b

) to A.
3 Guess stage: A can continue to request for the encryption of any

message m of its choice. C replies with E
K

(m). Finally A outputs a
bit b

0.

The adversary’s advantage is:

AdvA =

����Pr(b0 = b)� 1
2

����

24 / 36

Example: Proof of a Server-based Key Distribution Protocol

Double encryption

In the protocol 3PKD the adversary always sees the encryption of
the same message under two different keys K and K

0

Hence, we need to consider an extended definition of IND-CPA,
where the adversary has access to an encryption oracle that when
queried on a message m, returns two ciphertexts (E

K

(m), E
K

0(m)).

The double encryption adversary DE outputs two messages m0
and m1 at the end of the ‘find’ stage and gets
c = (E

K

(m
b

), E
K

0(m
b

)), where b 2
R

{0, 1}.
The adversary DE breaks the IND-CPA security of the double
encryption scheme if it guesses b with non-negligible advantage.

25 / 36

Example: Proof of a Server-based Key Distribution Protocol

One can prove the following result needed in the proof of security of
the key establishment protocol:

Theorem
Let E be a IND-CPA secure encryption scheme, then the double

encryption scheme built from E is IND-CPA secure.

The proof is left as an exercise.

26 / 36

Example: Proof of a Server-based Key Distribution Protocol

UF-CMA MAC

Consider the following game played between a challenger C and an
adversary F :

1 C chooses a random key K .
2 A can ask for the tag (MAC value) of any message m of its choice.

C replies with M
K

(m). Similarly, F can check the validity of any
pair of message and MAC tag (m, ⌧) of its choice. C replies with
V

K

(m, ⌧) (either ‘true’ or ‘false’)
3 F wins if it can output a valid tag on a message that has not been

previously output by the challenger.
The MAC scheme is unforgeable under adaptive chosen message
attacks (UF-CMA) if Pr(F wins) is negligible for all PPT adversaries.

27 / 36

Example: Proof of a Server-based Key Distribution Protocol

Proof security of 3PKD (sketch)

Let A be an adversary against the 3PKD protocol that succeeds with
probability SuccA when the protocol is run with n

p

principals. Let n

s

be
the maximum number of sessions between any two principals. Both n

p

and n

s

are polynomial functions.

We consider two cases:
1 A gains her advantage by forging a MAC with respect to some

user’s MAC key;
2 A gains her advantage without forging a MAC.

28 / 36

Example: Proof of a Server-based Key Distribution Protocol

Case 1: Adaptive MAC forger F

Assume that at some point A outputs a forgery of a MAC with
respect to some user’s MAC key that A does not know.
More precisely, we define the event forge at some point in the
game:

A asks a Send query which includes a message with a valid MAC;
A has not corrupted the owner of the MAC key;
the message and MAC have not been output as the answer to a
Send query.

We construct an adaptive forger algorithm F against the MAC
scheme that uses A.
F has access to the MAC generation and verification oracles
associated with the MAC key x

0 .

29 / 36

Example: Proof of a Server-based Key Distribution Protocol

F runs A on a simulated interaction with a set of n

p

principals, as
follows:

chooses one of the principals, I, at random;
generates all encryption and MAC keys randomly except for the
MAC key corresponding to ⇧

I

;
responds to all of A0

s queries as per 3PKD specification;
to simulate messages involving ⇧

I

, F uses the MAC generation
oracle;
if a Corrupt query is sent to ⇧

I

then the algorithm fails. This only
happens if we are ‘unlucky’.

30 / 36

Example: Proof of a Server-based Key Distribution Protocol

Success probability of F

F monitors A’s queries to detect any forgery (using the verify
oracle).
Note that, except when we are ‘unlucky’, the simulation of the
principals by F is perfect: A cannot “discriminate” against any
particular principal; they all look the same.
When event forge occurs, the probability that it corresponds to ⇧

I

is 1/n

p

. In this case F wins its MAC game by outputting the same
MAC. This happens with probability

Pr(SuccF) = Pr(forge)/np.

31 / 36

Example: Proof of a Server-based Key Distribution Protocol

Case 2: Double-Encryption attacker DE

Assume now that event forge does not occur.
Then we construct an algorithm DE that breaks the IND-CPA
security of the double encryption scheme.
DE has access to the double encryption oracle corresponding to
keys x and y .
DE chooses a random pair of messages m0 and m1 of length
equal to that of session keys in 3PKD, and hands them to the
challenger.
DE receives c = (E

x

(m
b

), E
y

(m
b

)), where b 2
R

{0, 1}

32 / 36

Example: Proof of a Server-based Key Distribution Protocol

DE runs A on a simulated interaction with a set of n principals, as
follows:

chooses randomly two oracles ⇧s

I

and ⇧t

J

which are instances of
principals I and J.
DE generates all encryption and MAC keys randomly except for
those for the encryption keys of principals I and J.
DE can answer directly all queries to principals except for I and J

because DE generated their keys.
For encryption queries to principals I and J, DE uses the
encryption oracles available from the IND-CPA game, except for
the sessions ⇧s

I

and ⇧t

J

.

33 / 36

Example: Proof of a Server-based Key Distribution Protocol

Simulating queries for DE

Send queries to the server for ⇧s

I

and ⇧t

J

are answered with
E

x

(m
b

), E
y

(m
b

), respectively, as the encrypted session keys.
If a Reveal or Corrupt query is sent to ⇧s

i

and ⇧t

j

then the
algorithm DE aborts and returns a random bit. This only happens
if we are ‘unlucky’.
Because there is no MAC forgery, every ciphertext output by A
was generated properly. This means it was actually generated by
DE so Reveal queries can be answered correctly for oracles other
than ⇧s

i

and ⇧t

j

.

If the Test query points to ⇧s

I

or ⇧t

J

then DE gives A plaintext m0
and return the same answer that A does. This happens when we
are ‘lucky’ and has polynomial (non-negligible) probability.

34 / 36

Example: Proof of a Server-based Key Distribution Protocol

Advantage of DE

If algorithm DE chooses the right test session, which happens with
probability 1

n

2
p

n

s

, then DE succeeds whenever A succeeds. Hence:

Pr(SuccDE) =
1

n

2
p

n

s

· Pr(SuccA|forge) +

1 � 1

n

2
p

n

s

!
· 1/2

= 1/2 +
1

n

2
p

n

s

✓
Pr(SuccA|forge)� 1

2

◆

We can rewrite this as:

Pr(SuccA|forge)� 1
2
= n

2
p

n

s

· AdvDE

35 / 36

Example: Proof of a Server-based Key Distribution Protocol

Conclusion of proof

The proof concludes by observing that:

AdvA = Pr(SuccA)� 1/2
 Pr(forge) + Pr(SuccA|forge)� 1/2
 n

p

Pr(SuccF) + n

2
p

n

s

AdvDE

It follows that if the advantage of A is non-negligible, then we can
either forge MACs with non-negligible probability or break the
encryption scheme with non-negligible advantage.

36 / 36

Models for Key Establishment

Colin Boyd

Department of Telematics
NTNU

May 2014

1 / 44

Developments from BR93

Outline

1 Developments from BR93

2 CK model

3 eCK model

4 Forward secrecy and weak forward secrecy

5 Other developments

2 / 44

Developments from BR93

Bellare–Rogaway model evolution

BR93 covered mutual authentication and key exchange from
pre-shared symmetric-keys.
BR95 covered server-based key exchange (Kerberos style)
Blake-Wilson and Menezes (1997, 1998) extended model to cover
public keys and key agreement.
BPR00 (B, R and Pointcheval) covered password-based protocols
and also extended model to include forward secrecy.

3 / 44

Developments from BR93

CK model evolution

BCK98 introduces modular approach and secure channel goals
CK01 fixes up problems with BCK98
CK-HMQV 2005 model fixes up problems with CK01 but ignores
modular approach
eCK introduced simple model, capturing some things CK-HMQV
cannot, leaving other things out.
CF12 puts back forward secrecy into eCK.

4 / 44

Developments from BR93

Differentiators for computational models

How partnering is defined / what freshness means
What the adversary is allowed to obtain
When the adversary is allowed to obtain things

5 / 44

Developments from BR93

Models we will not go into

Shoup (1997)
Simulation based (possibly too strong)
Not much used

Password authenticated key exchange (PAKE)
Group key exchange
Timestamps
Universal composability (UC)

6 / 44

CK model

Outline

1 Developments from BR93

2 CK model

3 eCK model

4 Forward secrecy and weak forward secrecy

5 Other developments

7 / 44

CK model

Canetti-Krawczyk (CK01) model

Similar basic idea to Bellare–Rogaway models
Builds on Bellare, Canetti and Krawczyk (1998)
Two main motivations:

build secure channels for sessions
a modular design approach using authenticators.

Allows session state to be revealed

8 / 44

CK model

Sessions

Partnering in the CK01 model is defined through session
identifiers.
Any party Pi starts a protocol run when it receives an input of the
form (Pi ,Pj , s, role) for a session identifier s and
role 2 {initiator, responder}.
Two sessions (Pi ,Pj , s, role) and (Pj ,Pi , s0, role0) are said to be
matching if s = s0.
It is not required that role0 6= role

9 / 44

CK model

Adversary queries

The following special queries are available to the adversary.
Party corruption. This query returns the long-term key of the party

and also all the memory which may include ephemeral
keys or session keys.

Session key reveal. As in the BR models the adversary can obtain
the session key of any completed session by asking a
reveal query.

Session state reveal. The session-state reveal query can be asked
of an incomplete session and returns the internal state.
The model allows the protocol to specify what is included
in the session state, but a typical example would be an
ephemeral Diffie–Hellman exponent.

Session expire. This query deletes the session key from the input
session specified.

10 / 44

CK model

Freshness in CK01

A session (Pi ,Pj , s, role) is fresh as long as:
it has not been asked a session-state reveal query;
it has not been asked a reveal query;
Pi was not asked a corrupt query before the session was asked an
expire query;
the above three conditions also hold for any matching session
(Pj ,Pi , s, role0).

The condition on corrupt captures forward secrecy.
The adversary is only allowed to choose fresh sessions as its test
session.

11 / 44

CK model

Security game

1 Long-term keys are generated for all parties using a
protocol-dependent function called initialization which is run
before the protocol starts.

2 The adversary can send messages to any instance and observe
the response.

3 The adversary can ask: reveal queries to any instance;
session-state reveal queries to any incomplete instance; or expire
queries to any complete instance.

4 The adversary can ask corrupt queries to any principal.
5 At some point the adversary asks a test query to any fresh

instance. The adversary can continue to send message and ask
other queries as long as the tested session remains fresh.

6 Eventually the adversary outputs its guess bit b0.

12 / 44

CK model

CK01 security definition

Definition
A protocol ⇧ is a secure authenticated key exchange protocol in the
CK01 model if both of the following hold:

1 if two uncorrupted parties complete matching sessions then both
instances will end in the accept state with the same session key;

2 the advantage of any efficient adversary A in guessing the correct
bit in the security game is negligible.

13 / 44

CK model

Modular design

Define two worlds:
Authenticated links model or AM: the adversary A is not able to
fabricate messages but can only activate instances using
messages output by legitimate parties.
Unauthenticated links model or UM: a full adversary is allowed.

A protocol ⇡ which is secure in the AM can be transformed into a
protocol C(⇡) which is secure in the UM be applying a valid
authenticator C.
Secure protocols in the AM can generally be much simpler than
protocols in the UM.
Secure protocols in the AM can be defined independently of
authenticators but then combined to obtain secure protocols in the
UM.

14 / 44

CK model

Post-specified peers

Variant of CK01 published in 2002 by Canetti and Krawzyk
Some protocols do not require both parties to identify at the start
of the protocol. This can help with anonymity.
CK02 is a relaxed model with a new definition of partnering which
allows session to have uncompleted partner sessions.
They prove the IKE protocol, used in IPSec, secure in this model
Later, Menezes and Ustaoglu show that the HMQV protocol is not
secure in the post-specified setting.

15 / 44

CK model

Criticisms of CK model

The CK01 model has received some significant criticism.
Session identifiers. The usage of session identifiers has been one of

the most controversial aspects of the CK01 model
because there is no concrete definition. Instead, the
CK01 paper states that session identifiers are: . . . chosen
by a “higher layer” protocol that “calls” the protocol.

Session state query What constitutes session state can be defined
by the protocol designer. Not necessary realistic.

Restrictions on queries No session which has had a session-state
reveal query can be fresh. This rules out some attacks
which are captured in other models since the test session
cannot have its ephemeral keys revealed.

16 / 44

CK model

Criticisms of CK model

The CK01 model has received some significant criticism.
Session identifiers. The usage of session identifiers has been one of

the most controversial aspects of the CK01 model
because there is no concrete definition. Instead, the
CK01 paper states that session identifiers are: . . . chosen
by a “higher layer” protocol that “calls” the protocol.

Session state query What constitutes session state can be defined
by the protocol designer. Not necessary realistic.

Restrictions on queries No session which has had a session-state
reveal query can be fresh. This rules out some attacks
which are captured in other models since the test session
cannot have its ephemeral keys revealed.

17 / 44

CK model

Criticisms of CK model

The CK01 model has received some significant criticism.
Session identifiers. The usage of session identifiers has been one of

the most controversial aspects of the CK01 model
because there is no concrete definition. Instead, the
CK01 paper states that session identifiers are: . . . chosen
by a “higher layer” protocol that “calls” the protocol.

Session state query What constitutes session state can be defined
by the protocol designer. Not necessary realistic.

Restrictions on queries No session which has had a session-state
reveal query can be fresh. This rules out some attacks
which are captured in other models since the test session
cannot have its ephemeral keys revealed.

18 / 44

CK model

HMQV model

Based on CK01 with a few enhancements.
A session at principal IDA with intended partner B has session
identifier (IDA, IDB,Out , In) where In and Out are the messages
received and sent by the session.
Matching is then defined the same as in the original CK so that
completed sessions are matched if and only if their identifiers are
of the form (IDA, IDB,Out , In) and (IDB, IDA, In,Out).
Key compromise impersonation (KCI) attacks are captured by
allowing the adversary to obtain the private key of the owner of the
test session.
The session-state reveal query comes in two flavours.

1 The session state is defined as empty except for the session key
which can be obtained with a normal reveal query.

2 Later the session-state reveal includes the ephemeral secret key
chosen for that session.

19 / 44

eCK model

Outline

1 Developments from BR93

2 CK model

3 eCK model

4 Forward secrecy and weak forward secrecy

5 Other developments

20 / 44

eCK model

The eCK model

Proposed in 2007 by LaMacchia, Lauter and Mityagin. They called
their model an Extended Canetti–Krawczyk model and it is now
widely referred to as the eCK model.
Tackles directly some of the perceived weaknesses in the CK and
BR models. Specific advantages are:

the adversary can obtain ephemeral secrets which belong to the
test session;
the adversary can obtain the long-term key of the test session and
of its partner even before the session is completed.

Was widely believed that the eCK model is strictly stronger than
the CK01 (or HMQV) model, but there are other features which
the eCK model does not capture.

21 / 44

eCK model

A generic one-round protocol

private key xA private key xB
A B

rA R
tA = f (xA, rA, public info)

tA�!
rB R

tB = f̂ (xB, rB, public info)
tB �

ZAB = F (xA, rA, tB, public info) ZAB = F̂ (xB, rB, tA, public info)

rA and rB are ephemeral secrets
ZAB is the shared secret

22 / 44

eCK model

Idea of the eCK model

The general idea behind the eCK model is simple and appealing.
Each party in a protocol run has two secrets - a long-term secret
xA and an ephemeral secret rA, the latter chosen for this particular
protocol run.
The adversary should be allowed to obtain any of these secrets
which do not trivially allow the session key to be computed.
So the adversary should be allowed to obtain (rA, rB) or (xA, xB) or
(rA, xB) or (xA, rB) but not (rA, xA) or (rB, xB).

23 / 44

eCK model

Freshness in eCK model

As in the CK01 model, partnering is defined through session
identifiers. However, sessions are only partners if they agree on
which one of them takes the initiator and which takes the
responder role.
A session with ephemeral key rA at party A with intended partner
B is fresh as long as:

the session has not been asked a reveal query;
if a matching session exists at B with ephemeral key rB then:

both rA and xB were not revealed;
both rB and xB were not revealed;

if no partner exists then xB has not been revealed.

24 / 44

eCK model

Naxos protocol (again)

yA = gxA yB = gxB

A B

rA R
hA = H1(xA, rA)

tA = ghA

tA�!
rB R

hB = H1(xB, rB)
tB = ghB

tB �
ZAB = H2(txA

B , yhA
B , thA

B ,A,B) ZAB = H2(yhB
A , txB

A , thB
A ,A,B)

25 / 44

eCK model

The NAXOS trick

NAXOS protocol is proven secure in eCK model.
Notice that basic ephemeral Diffie–Hellman, authenticated in any
way, is insecure in the eCK model.
In the NAXOS protocol, the ephemeral secret key is combined
with the long-term key, preventing the adversary from obtaining
anything useful from the ephemeral reveal query.
This idea is now widely known as the NAXOS trick and there is
some disagreement about whether using the trick is in some
sense cheating.

26 / 44

eCK model

Comparing models

It seems to be accepted now that CK and eCK models are
incomparable. (Doubt is around what is the precise definition of
state reveal queries in CK.)
Cremers (2011) shows that differences in partnering is enough to
separate all three models.
Cremers (2009) gives a neat attack on Naxos when session state
includes all the parameters except the long-term key. Ostaoglu
(2009) showed that a similar attack is available on HMQV.

27 / 44

eCK model

Separating eCK from HMQV (Cremers 2011)

In eCK, sessions must agree on their roles in order to be partners.
In HMQV, sessions are partners if they have the same session ID,
independent of whether they agree on their roles.
A protocol like NAXOS includes the IDs of the participants in the
KDF. This means that NAXOS cannot be secure in CK model.
A protocol like HMQV does not include the IDs of the participants
in the KDF. This means that HMQV cannot be secure in eCK
model.
Arguably this is a detail which just needs to be taken care of:
sessions key definition and matching definitions must line up.

28 / 44

Forward secrecy and weak forward secrecy

Outline

1 Developments from BR93

2 CK model

3 eCK model

4 Forward secrecy and weak forward secrecy

5 Other developments

29 / 44

Forward secrecy and weak forward secrecy

Defining strong and weak forward secrecy

A protocol provides forward secrecy if the adversary cannot distinguish
the session key from a random string even given the long-term keys of
both parties after the session is complete.

Strong forward secrecy (sFS)
This property holds even if the adversary takes an active part in the
session under attack. In this case the victim executes the session with
the adversary who masquerades as a legitimate party.

Weak forward secrecy (wFS)
This property only holds when the adversary is prevented from taking
an active part in the session under attack. In this case the victim
executes the session with a legitimate party whose messages are
transmitted correctly to the victim.

30 / 44

Forward secrecy and weak forward secrecy

Diffie–Hellman-based one-round protocol (DH1R)

private key xA private key xB
A B

rA R
tA = grA

tA�!
rB R
tB = grB

tB �
ZAB = F (xA, rA, tB, public info) ZAB = F̂ (xB, rB, tA, public info)

Here g generates a group in which Diffie–Hellman is secure
Prominent concrete protocols include MQV, HMQV and UM

31 / 44

Forward secrecy and weak forward secrecy

DH-based protocol cannot have strong FS

Krawczyk attack on any DH1R protocol
Active adversary chooses valid rA and sends tA masquerading as
A.
B accepts and may encrypt secrets for A.
After expiry adversary obtains xA and can compute shared secret
in same way as A would have.

Krawczyk showed instead that HMQV provides weak forward secrecy

32 / 44

Forward secrecy and weak forward secrecy

Gone viral

Krawczyk, Crypto 2005
“We note that this form of attack can be carried against any 2-message
key-exchange protocol (including HMQV) authenticated via public keys
and with no secure shared state previously established between the
parties.”

Menezes and Ustaoglu, ASIACCS, 2008
“Bellare, Pointcheval and Rogaway (2000) (see also [HMQV])
observed that two-pass key agreement protocols can only achieve
weak forward secrecy . . . ”

Saar et al., SCN 2010
“no two-pass key exchange protocol can achieve forward secrecy”

33 / 44

Forward secrecy and weak forward secrecy

Extending Krawczyk’s attack

1 A observes and records the first message tA from A to B.
2 A asks for the ephemeral value rA used in this instance.
3 A initiates a new instance of the protocol with B. In this instance

A masquerades as A.
4 A sends tA from the earlier protocol instance as the first message

of the new instance.
5 B will compute a new rB and tB and send tB to A which is captured

by A.
6 A eventually expires the session and corrupts A to obtain xA.
7 A now has all the inputs of F so can re-compute ZAB.

34 / 44

Forward secrecy and weak forward secrecy

Impact of attack

Attack applies to the generic one round protocol.
The adversary can recover any information sent by B during the
session established in step 3.

Proposition (BG 2011)
A one-round key exchange protocol cannot provide strong forward
secrecy in any model which allows the adversary to reveal ephemeral
secrets of the partner party to the test session. This holds even if
ephemeral secrets cannot be revealed during the test session.

35 / 44

Forward secrecy and weak forward secrecy

Cremers–Feltz models

eCK model cannot capture full forward secrecy because it has no
notion of timing.
Cremers and Feltz (2012, 2013) defined an origin session of the
test session to be one which sends the message received by the
test session.
They define a model called eCK-PFS which extends eCK by
allowing the adversary to obtain either:

the long-term keys after the session is complete when the
adversary is active and can choose the peer ephemeral key; or
exactly one of (the ephemeral key of an origin session) and (the
long-term key of the peer) when an origin session exists.

Cremers and Feltz (2012, 2013) apply signatures, while BG
(2012) apply MACs, to achieve strong forward secrecy generically
for one-round protocols.

36 / 44

Forward secrecy and weak forward secrecy

Some key exchange challenges

Can we unify existing models in any useful way? Or perhaps
classify them?
Is there a stronger or a strongest model? Is there a “right” model?
Can different protocol goals be usefully included in key exchange
models? Examples might be key renegotiation or ciphersuite and
version negotiation. Why was 3-shake not captured in TLS
analysis?
Still a lot of real-world protocols whose security is not formally
analysed.

37 / 44

Other developments

Outline

1 Developments from BR93

2 CK model

3 eCK model

4 Forward secrecy and weak forward secrecy

5 Other developments

38 / 44

Other developments

Standard model

Widely believed a good thing to avoid the random oracle model
(ROM).
Most efficient schemes like HMQV rely on ROM for their proof.
KDF can be made standard model by using PRF, for example with
Krawczyk’s HMAC-based construction.
Generic constructions exist which can use generic standard
model primitives.

39 / 44

Other developments

Incorporating certification systems

ASICS model of BCFPPS at ESORICS 2013
Give the adversary access to public key registration query.
Includes the registration of invalid keys. This captures some well
known real-world attacks.
Allow users to own multiple public keys and also the same public
key for multiple identities.
A framework for incorporating certification into common
game-based AKE models.

40 / 44

Other developments

Leakage resilient key exchange

Leakage resilience is a new trend in cryptography since around
2005. Aims to capture side channel attacks.

A gets access to a chosen function of the long-term secret with
some restrictions
Leakage can be continuous or bounded
Leakage can be restricted to before the target session occurs
Best model (if such exists) not yet established.

Natural to include key exchange in the list of leakage-resilient
primitives.
First results by Moriyama and Okamoto, 2011.

41 / 44

Other developments

Recent results (ASB 2014)

Strengthen BR or eCK model by giving the adversary access to
leakage function.
Generic constructions can be made using existing
leakage-resistant primitives.
Plug LR-encryption into generic encryption-based key exchange
construction.
To achieve continuous leakage resilience need to have stateful
protocols

42 / 44

Other developments

Secure channels

In the key exchange models security has been defined to be essentially
as strong as we can imagine. However, we can ask for more.

1 The key exchange protocol and application in practice run in
parallel so we should worry about analyzing the security of the
combination of key exchange and applications.

2 In some applications, prominently TLS, we are unable to achieve
the strong indistinguishability definition for key exchange.

ACCE is a currently popular example of a weakened BR-style security
definition for secure channels suitable for proving security of TLS.

43 / 44

Other developments

Post quantum

Post quantum cryptography is current important trend.
Lattice-based encryption algorithms based on LWE implicitly
include a Diffie-Hellman type of key agreement protocol which is
post-quantum secure.

44 / 44

