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1. Layman’s Introduction to Authenticated
Encryption
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Authenticated Encryption
An Authenticated Encryption (AE) primitive provides both:

▶ Authentication or message integrity protection, and
▶ Encryption or confidentiality / privacy protection.

Preferably in a single processing step, allowing parallelism.
Security protocols such as IPSec and SSL/TLS usually required
two processing steps for each packet in 1990’s and 200x’s.

▶ Authentication was handled with HMAC (Hash Message
Authentication Code), which builds a MAC from a hash H:

SQ HMAC(K,m) = H(K⊕ opad | H(K⊕ ipad | m)).
▶ Encryption was provided either with block cipher such as

3DES-CBC or AES-CBC or a stream cipher such as RC4.
Hardware implementation of such a twin set-up is cumbersome.
This is still the standard mechanism in TLS 1.3, although transition
to authenticated encryption has been swift during last few years.

3 / 59



Encrypt-then-MAC vs. MAC-then-Encrypt (1)

M. Bellare and C. Nampremprey: “Authenticated Encryption:
Relations among notions and analysis of the generic composition
paradigm” ASIACRYPT 2000.
This paper was quite influential about 10+ years ago, but the
results have been overstated and often misinterpreted.
It claimed that Encrypt-and-MAC (i.e. any modern Authenticated
Encryption algorithm) “does not preserve privacy”

.. because the MAC could reveal information about the
plaintext.

Solution: Just use any (randomized) MAC that does not reveal
such information.
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Encrypt-then-MAC vs. MAC-then-Encrypt (2)

M. Bellare and C. Nampremprey:
E & M also fails to provide integrity of ciphertexts. This
is because there are secure encryption schemes with the
property that a ciphertext can be modified without
changing its decryption.

Solution: Show that your encryption scheme does not have that
property. For example all stream ciphers are bijective and do not
have that property; Integrity of ciphertext exists for those.
One can reasonably argue that the models (for “secure encryption
schemes” and “secure MACs”) that Bellare & Co. chose to use
were broken, not Encrypt-and-MAC itself.

5 / 59



Authenticated Encryption with Associated Data
An Authenticated Encryption with Associated Data (AEAD)
primitive additionally allows associated (plaintext) data to be
authenticated (integrity protection only).
Inputs:

▶ Secret Key for both confidentiality and integrity.
▶ Initialization Vector (IV) which is typically a nonce.
▶ Associated Data which is not encrypted, only authenticated.
▶ Plaintext which is encrypted for confidentiality protection,

and also authenticated.

Outputs:
▶ Ciphertext, which corresponds to the plaintext above.
▶ Authentication Code, against modification of Ciphertext or

Associated Data.
(Ciphertext and MAC may be intermixed.)
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Role of Associated Data (1)

Authenticated Associated Data (AAD) typically consists of
information such as:

▶ Session identifier or Security Association
▶ Source and destination address of message
▶ Sequence number and other information stream reassembly

This information must be transmitted in clear for correct delivery,
but its content must still be integrity protected with an
authentication key for security.
Associated Data is typically managed by the secure transport
protocol or layer, and is transmitted in clear.
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Role of Associated Data (2)

Message Payload
confidentiality and integrity

Associated Data
integrity protection only

From Alice’s Application
Managed by a Transport Protocol such as TLS, IPSec, SSH, ZRTP etc

AEAD

transmitted in clear
Authenticated Ciphertext

tagencrypted payload

AEAD−1

Nonce
usually unique for message

Secret Key
for auth and encrypt

optionally transmitted not transmitted, shared

Message Payload
confidentiality and integrity

FAILor

To Bob’s Application
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2010s: With AES-GCM AE is now mainstream

Your gmail, facebook, and VPN probably uses AES-GCM.
GCM: Galois / Counter Mode, FIPS SP 800-38D (2007) is an

AEAD mode for AES.
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AES-GCM Only Approved “Suite B” Algorithm

AES-GCM is currently the only approved algorithm in NSA’s
unclassified “Suite B”, making it basically the only choice for
Governmental and NATO COTS information processing.
Currently certified up to TOP SECRET with 256-bit keys.
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Historical Timeline
▶ Authenticated encryption schemes go back some 30+ years

(ANSI X9.9 CBC-MAC, 1981).
▶ First “provably secure” AEAD mode in year 2000 (IACBC).
▶ The 2004 total break of MD5 by Xiaoyun Wang & Co.

resulted in near-panic with regard to SHA security, which in
turn led to the SHA-3 competition (2007-2012).

▶ Apparently fear for HMAC-SHA security caused NSA to adopt
AES-GCM in Suite B (2005) and to issue IETF RFCs for
AES-GCM use in SSH, TLS, and IPSec.

▶ This is of course really quite silly as we know that even
HMAC-MD5 is more secure than AES-GCM (later).

▶ Some fear the the push by NSA to put AES-GCM everywhere
is driven by some nefarious motives (I don’t think so).

▶ AES-GCM was applauded by the industry (e.g. CISCO) since
AES-GCM is significantly easier/cheaper to implement for
high-speed links in hardware. Intel adopted hardware
assistance in its processors in the form of AES NIS.
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Other Polynomial MACs and Hashes”
FSE 2012, Washington D.C. 20 March 2012
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2. 21st Century crypto:
Sponges, KECCAK, and CAESAR
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SHA-3 Algorithm KECCAK: A Sponge-Based Hash

KECCAK and “Sponge
Functions” were invented by:

Guido Bertoni (STMicro)
Joan Daemen (STMicro)
Michaël Peeters (NXP)

Giles Van Assche (STMicro)

▶ 11 Feb 2007 NIST Call for Proposals
▶ 31 Oct 2008 SHA3 Submissions (64)
▶ 10 Dec 2008 First Round (54)
▶ 24 Jul 2009 Second Round (14)
▶ 09 Dec 2010 SHA3 Finalists (5)
▶ 12 Aug 2011 KECCAK Team in

SAC ’11: “Duplexing the sponge..”
▶ 02 Oct 2012 KECCAK Chosen
▶ 04 Apr 2014 NIST publishes

“DRAFT FIPS 202, SHA-3 Standard:
Permutation-Based Hash and
Extendable-Output Functions”

≈ 2015 KECCAK will be officially
Secure Hash Algorithm 3.
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SHA-3 Algorithm KECCAK: An U.S. Standard

▶ So.. an European Sponge will become the new U.S. Civilian,
Federal Government and Military cryptographic hash standard
for digital signatures and other uses.

▶ And it might also become the standard for Authenticated
Encryption !
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The Sponge Construction for Hashing

▶ More general than traditional hash function: arbitrary-length
output

▶ Built from a b-bit permutation f (π commonly used), with
b = r + c

▶ r bits of rate, related to hashing speed
▶ c bits of capacity, related to security
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Generic Security as a Hash (from Keccak team)

▶ N is the number of f
invocations

▶ r is the rate in bits
▶ c is the capacity in bits

RO-differentiating adv. ≤ N2/2c+1

▶ Proven by Keccak team,
Eurocrypt 2008

▶ As strong as random oracle
against attacks with N < 2c/2

Bound assumes f to be a random
permutation

▶ Covers generic attacks against
the mode

▶ .. but not attacks that exploit
specific properties of f
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Regular Hashing and Salted Hashing

Unkeyed Hash Mode (SHA-3)
▶ Electronic signatures

(PKCS #1 RSA, ECDSA)
▶ Data integrity (sha1sum etc)
▶ Data id (git, anti-virus, P2P)

Salted Mode
▶ Randomized hashing

(RSASSA-PSS, Salt = IV)
▶ Password storage (/etc/shadow)
▶ Message Authentication Codes

(Salt = KEY)
▶ Different security parameters
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Other Provable Uses for Sponge Permutations

0 f f

Key

…

Padded message

f ff

MAC

0 f f

Key IV

f

Key stream

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

MAC Mode: Provably secure.

Stream Cipher Mode: Provably
secure.

Authenticated Encryption is
encryption + MAC. We’ll come back
to this later.
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DuplexWrap (basic Sponge AE Scheme) Bounds
Theorem
The DuplexWrap and BLNK authenticated encryption modes
satisfy the following privacy and authentication security bounds:

Advpriv
sbob(A) < (M + N)2−k +

M2 + 4MN
2c+1

Advauth
sbob(A) < (M + N)2−k +

M2 + 4MN
2c+1

against any single adversary A if K $← {0, 1}k, tags of l ≥ t bits are
used, and π is a randomly chosen permutation.
M is the data complexity (total number of blocks queried from
keyed sponge instance) and N is the time complexity (total number
equivalents of π or its inverse execution time).

Proof.
Theorem 4 of [KeyakV1]. See also [AnMePr10,BeDaPeAs11].
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CAESAR 2014-2017

NIST-Funded Competition for Authenticated
Encryption: Security, Applicability, and Robustness.
http://competitions.cr.yp.to/caesar.html

▶ 15 Jan 2013 Announced by Dan Bernstein
▶ 15 Mar 2014 First round submissions (57)
▶ 15 May 2014 First-round software
▶ 23-24 Aug 2014 DIAC ’14, UCSB
▶ 15 Jan 2015 Second round candidates
▶ 15 Feb 2015 Second round tweaks (fixes)
▶ 15 Dec 2015 Third round candidates
▶ 15 Dec 2016 Final round candidates
▶ 15 Dec 2017 Portfolio announcement
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CAESAR Situation May 1, 2014
See https://aezoo.compute.dtu.dk for updates.
Round 1 Candidates
ACORN ++AE AEGIS AES-CMCC AES-COBRA AES-COPA
AES-CPFB AES-JAMBU AES-OTR AEZ Artemia Ascon
AVALANCHE Calico CBA CBEAM CLOC Deoxys ELmD Enchilada
FASER HKC HS1-SIV ICEPOLE iFeed[AES] Joltik Julius Ketje
Keyak KIASU LAC Marble McMambo Minalpher MORUS NORX
OCB OMD PAEQ PAES PANDA π-Cipher POET POLAWIS
PRIMATEs Prøst Raviyoyla Sablier SCREAM SHELL SILC Silver
STRIBOB Tiaoxin TriviA-ck Wheesht YAES

▶ Based on AES or other Block Cipher
▶ Based on KECCAK (submissions from KECCAK team)
▶ Withdrawn from Competition by Authors
▶ Pretty much broken by someone
▶ Less fatal vulnerabilities reported
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On CAESAR Cryptanalysis
I had two “one-man band” candidates:

▶ CBEAM, a super-lightweight Sponge
based on BLNK and novel ideas like
rotation-invariant ϕ functions.

▶ STRIBOB, a high-security Sponge
based on BLNK an the LPS transform
of GOST R 34.11-2012 LPS
“Streebog” Permutation.

On April 3, 2014, Brice Minaud of ANSSI
reported a relatively simple differential
attack on CBEAM that breaks
authentication with 2−43 probability. I still
can’t believe that I missed this attack –
CBEAM was already published in CT-RSA
’14 (LNCS 8366). CBEAM.
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Agence nationale de la sécurité des systèmes d’information, France.
They participate in public efforts like CAESAR and inform us

about bugs. Don’t expect that from NSA GCHQ FSB ..
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3. “STRIBOB: Authenticated Encryption from
GOST R 34.11-2012 LPS Permutation”

CTCrypt 2014, 05-06 June 2014, Moscow, RUSSIA
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GOST R 34.11-2012
Russian Standards (GOST)

▶ 28149-89 Block Cipher (KGB, 1970s)
▶ R 34.11-94 was a hash based on

28149-89, used for R 34.10-94
Signatures.

▶ Cryptanalysis by F Mendel et al
(2008): 2105 collision, 2192 preimage.

▶ ”Streebog” proposed in 2009.
▶ Since January 1, 2013, the Russian

Federation has mandated the use of
GOST R 34.11-2012 hash algorithm in
GOST R 34.10-2012 digital signatures.

▶ Good security margin.
▶ STRIBOB builds a Sponge AEAD

from Streebog!
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GOST R 34.11-2012 ”Streebog”
The 2012 standard has superficial similarities to the 1994 standard
but also features clearly AES-inspired design elements. Intended
for Digital Signatures (R 34.10-2012), but also used with HMAC.
A (non-keyed) cryptographic hash function that produces a 256-bit
or 512-bit message digest for a bit string of arbitrary length.
Standard security requirements:

▶ Collision resistance:
Finding m1 and m2, h(m1) = h(m2) should require 2

n
2 effort.

▶ Pre-image resistance:
Finding m for given h in h = H(m) should require 2n effort.

▶ Second pre-image resistance:
Finding m2 for given m1 with h(m1) = h(m2) should require
2n

|m2| effort.

Not a Sponge, but a Miyaguchi–Preneel - inspired construction:
hi = Eg(Hi−1)(mi)⊕ hi−1 ⊕mi.
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Computing h(M) with Compression Function gN(h,m)

g0 g512 g1024 g512n

m0 m1 m2 padmn

g0

|M |

g0

total length “checksum”

h(M)

· · ·

∑n
i=0mi (mod 2512)

h = 0

ε = 0

M =

Padded message M is processed in 512-bit blocks
M = m0 | m1 | · · · | mn by a compression function h′ = gN(h,mi).
For 256-bit hashes, the initial h value is changed to 0x010101..01
and the output h(M) is truncated to 256 bits.
Chaining variable h has 512 bits. N is the bit offset of the block.
There are finalization steps involving two invocations of g, first on
the total bit length of M, and then on checksum ϵ, which is
computed over all input blocks mod 2512.
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Streebog: The Compression Function gN(h,m)

LPS LPS

LPS

LPS

LPS

LPS

LPS

LPS

LPS

h

m

h′

C3

N

C2C1 C12

4, 5, · · · , 11

h′ = gN(h,m)

K12K3K2K1

N: bit offset h: chaining value m: 512-bit message block

The compression function is built form a 512× 512 - bit keyless
permutation LPS and XOR operations. All data paths are 512 bits.
The 12 random round constants Ci are given in the standard spec.
One can see the upper “line” (kinda) keying the lower line via Ki.

30 / 59



Streebog: LPS = L ◦ P ◦ S = L(P(S(x)))
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( 64× 64-bit matrix )

L

L

L

L

L

L

( 8× 8-bit S-Box )

L ◦ P ◦ S

S P L

S : (“Substitution”) An 8× 8 - bit S-Box applied to each one of
64 bytes (8× 64 = 512 bits).

P : (“Permutation”) Transpose of 8× 8 - byte matrix.
L : (“Linear”) Mixing of rows with a 64× 64 binary matrix.
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Streebog LPS: 1. Substitution step S
We write the state as zero-indexed matrix m[0 . . . 7][0 . . . 7],
serialized as

v[ i ] = m[ ⌊i/8⌋ ][ i mod 8 ] for i = 0, 1, · · · , 63.

Streebog has a single 8-bit S-box S, as in AES.
In this step, the 8× 8 - bit S-Box is applied to each byte (octet):

m′[ i ][ j ] = S(m[ i ][ j ]) for 0 ≤ i, j ≤ 7.

S has apparently been designed to resist classical cryptanalysis:
▶ Differential bound: P = 8

256

▶ Best linear approximation: P = 28
128

▶ All output bits have Deg 7
Unknown design methodology; apparently not a simple equation
like the AES S-Box.
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Streebog LPS: 2. Permutation step P
A permutation of bytes in the state, equivalent of transposing the
8× 8 byte matrix.
Transposition is a reflection along the main diagonal, which can
also be seen as writing rows as columns:

m′[ i ][ j ] = m[ j ][ i ] for 0 ≤ i, j ≤ 7.

00 01 02 03 04 05 06 07
08 09 0A 0B 0C 0D 0E 0F
10 11 12 13 14 15 16 17
18 19 1A 1B 1C 1D 1E 1F
20 21 22 23 24 25 26 27
28 29 2A 2B 2C 2D 2E 2F
30 31 32 33 34 35 36 37
38 39 3A 3B 3C 3D 3E 3F



T

=



00 08 10 18 20 28 30 38
01 09 11 19 21 29 31 39
02 0A 12 1A 22 2A 32 3A
03 0B 13 1B 23 2B 33 3B
04 0C 14 1C 24 2C 34 3C
05 0D 15 1D 25 2D 35 3D
06 0E 16 1E 26 2E 36 3E
07 0F 17 1F 27 2F 37 3F


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Streebog LPS: 3. Linear step L
L is specified in the form of a 64× 64 - bit matrix in the GOST
standard text but it is in fact built from a MDS matrix
multiplication in the finite field F28 with irreducible polynomial
p(x) = x8 + x6 + x5 + x4 + 1 in “bit reverse” representation.

m′ = m · L or m′[ i ][ j ] =
7⊕

k=0

m[ i ][ k ] ∗ L[ k ][ j ],

L =



8E 20 FA A7 2B A0 B4 70
A0 11 D3 80 81 8E 8F 40
90 DA B5 2A 38 7A E7 6F
9D 4D F0 5D 5F 66 14 51
86 27 5D F0 9C E8 AA A8
45 6C 34 88 7A 38 05 B9
E4 FA 20 54 A8 0B 32 9C
70 A6 A5 6E 24 40 59 8E


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Structural Relationship to AES (“Square design”)
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L ◦ P ◦ S

S P L

S ≈ AES SubBytes. Larger state: 64 rather than 16 bytes.
P ≈ AES ShiftRows. Each byte will be mixed with every other

byte in 2 rounds.
L ≈ AES MixColumns. Rows are mixed with a MDS matrix.

The constant addition corresponds to AddRoundKey.
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Streebog: Sponge Permutation π

For some vector of twelve 512-bit subkeys Ci we define a 512-bit
permutation πC(X1) = X13 with iteration

xi+1 = LPS(Xi ⊕ Ci) for 1 ≤ i ≤ 12.

We adopt 12 rounds of LPS as the Sponge permutation with
parameters:

b Permutation size b = r + c = 512, the LPS permutation size.
r Rate r = 256 bits.
c Capacity c = 256 bits.

As π satisfies the indistinguishability criteria, we may choose:
k Key size k = 192 bits.
t Authentication tag (MAC) size t = 128 bits.
k Nonce (IV) size t = 128 bits.
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Easy Security Reduction
Theorem
If πC(x) can be effectively distinguished from a random
permutation for an arbitrary set of constants Ci, so can gN(h, x) for
any h and N.

Proof.
If h is known, so are all of the subkeys Ki as those are a function of
h alone. We have the equivalence

gN(h, x)⊕ x⊕ h = πK(x⊕ N).

Assuming that the round constants Ci offer no advantage over
known round keys Ki, πC is as secure as πK and any distinguisher
should have the same complexity.

We see that a generic powerful attack against π is also an attack
on g. A distinguishing attack against g does not imply a collision
attack against Streebog as a whole.
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Security Reduction Explained

Just replace C with K in π:

LPS

K1

LPS

K2

LPS LPS

K3 K12

x′x

x′ = πK(x)

We have gN(h, x)⊕ x⊕ h = πK(x⊕ N):

LPS LPS

LPS

LPS

LPS

LPS

LPS

LPS

LPS

h

m

h′

C3

N

C2C1 C12

4, 5, · · · , 11

h′ = gN(h,m)

K12K3K2K1
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StriBob Performance
StriBob requires 12 LPS invocations per 256 bits processed whereas
Streebog requires 25 LPS invocations per 512 bits, making StriBob
faster. Also the runtime memory requirement is cut down to 25 %.
Implementation optimization uses similar techniques as that of
AES. However 64-bit rows are better suited for modern 64-bit
architectures (AES is from the 90s, 32-bit era).

Algorithm Throughput
AES - 128 / 192 / 256 109.2 / 90.9 / 77.9 MB/s
SHA - 256 / 512 212.7 / 328.3 MB/s
GOST 28147-89 53.3 MB/s
GOST R 34.11-1994 20.8 MB/s
GOST R 34.11-2012 109.4 MB/s
StriBob 115.7 MB/s

..as measured on my few years old Core i7 @ 2.80. My StriBob
implementation, StriBob optimized reference implementation. The
rest are OpenSSL (w/o AES NIS).
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31
2 “Beyond Modes: Building a Secure Record

Protocol from a Cryptographic Sponge
Permutation”

Modified from a paper originally presented at:
Cryptographers’ Track, RSA Conference ’14

San Francisco CA, February 26, 2014
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Background: Complex, Insecure Legacy Protocols
All of the (de facto) standard network security protocols – SSL3,
SSH2, TLS, IPSEC, PPTP, and wireless WPA2 (and its
predecessors) – consist of two essentially independent protocols:

1. The handshake / authentication protocol which authenticates
one or two parties and establishes a master shared secret K.

2. The transport / record protocol which provides security for
application data streams based on K.

In addition to the plaintext P, data items required by record
protocols to perform authenticated encryption at each direction:
Ke Key for the symmetric encryption algorithm.
Ka Key for the message authentication algorithm.
S Incremental message sequence number.

IV Initialization vector for ciphers.
That is 2× 4 = 8 separate cryptovariables and at least two
different algorithms (HMAC and block cipher) in addition to PRFs.
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Two-party Synchronization

Legacy protocols use two independent channels: one from Alice to
Bob (A→ B) and another from Bob to Alice (B→ A).
Example. Consider the following three transcripts:

T1 : B→ A : M2, A→ B : M1, A→ B : M3

T2 : A→ B : M1, B→ A : M2, A→ B : M3

T3 : A→ B : M1, A→ B : M3, B→ A : M2

These three exchanges have precisely the same valid representation
on the two channels when sent over IPSEC, TLS, SSL, or SSH
protocols. The same authentication codes will match, etc.
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The Synchronization Problem of Two-Channel
Protocols.

Despite individual message authentication, the interwoven order of
the sequence of back-and-forth messages cannot be unambiguously
determined and authenticated with legacy protocols.
This is why transaction records are often authenticated on the
application level as well, adding an another layer of complexity.
Issue also affects basic end-user interactive security as portions of
server messaging can be maliciously delayed, encouraging the user
to react to partial information.
Legal perspective on unambiguous session transcripts:
Steven J. Murdoch and Ross Anderson: “Security Protocols and
Evidence: Where Many Payment Systems Fail.” Financial
Cryptography and Data Security 2014, 3 – 7 March 2014,
Barbados.
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Motivation for BLNK
Legacy protocols are unsuited for ultra-lightweight applications.
Academic research has focused on lightweight primitives, and
suitable lightweight, general purpose communications protocols
have not been proposed.
We need a generic short-distance lightweight link layer security
provider that can function independently from upper layer
application functions.

▶ Design with mathematical and legal provability in mind.
▶ Aim at simplicity and small footprint: use a single sponge

permutation for key derivation, confidentiality, integrity, etc.
In traditional protocols these are all different functions.

▶ Use a single state variable in both directions, instead of 8+
cryptovariables. Allow forward security via forgetting.

▶ Ideally this protocol would be realizable with semi-autonomous
integrated hardware, without much CPU or MCU involvement.
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Recap: Sponge-based Authenticated Encryption

π π π π π π π

r

c

IV

d0 d··· p1 c1 p··· c··· h0 h···p0 c0

squeezing phaseencryption phaseabsorbtion phase

1. Absorption. Key, nonce, and associated data (di) are mixed.
2. Encryption. Plaintext pi is used to produce ciphertext ci.
3. Squeezing. Authentication Tag hi is squeezed from the state.
4. Why not use that final state as IV for reply and go straight to

Step 2 ? (feature called “sessions” in Ketje and Keyak)
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Simplification
Legacy protocol encryption of P to C with 4 cryptovariables:

C = fcs(P,S, IV,Ke,Ka).

Decryption can fail in authentication (auth tag is in C):

f−1
cs (C,S, IV,Ke,Ka) = P or FAIL.

In sponges we have a state Si, plaintext Pi, and some padding info
that produces a new state and ciphertext (including a MAC):

(Si+1,Ci) = enc( Si,Pi, pad ).

The decoding function dec() produces the same Si+1 and Pi from
the ciphertext and equivalent Si and padding, synchronizing the
state between sender and receiver:

(Si+1,Pi) = dec( Si,Ci, pad ) or FAIL.
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Security Goals

Designers should have provable bounds on these three goals:

priv The ciphertext result C of enc(S,P, pad) must be indis-
tinguishable from random when S is random and P may
be chosen by the attacker.

auth The probability of an adversary of choosing a message C
that does not result in a FAIL in dec(S,C, pad) without
knowledge of S is bound by a function of the authenti-
cation tag size t and number of trials.

sync Each party can verify that all previous messages of the
session have been correctly received and the absolute or-
der in which messages were sent.

First two are standard Authentication Encryption requirements, the
last one is new.
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Solution: Just continue to use the state in reply!

Initial state: S0 Initial state: S0

A B

enc(S0,M1) = (S1, C1)

dec(S0, C1) = (S1,M1)

enc(S1,M2) = (S2, C2)

A → B : C1

dec(S1, C2) = (S2,M2)

enc(S2,M3) = (S3, C3)

B → A : C2

A → B : C3

dec(S2, C3) = (S3,M3)

Final state: S3 Final state: S3

Simplified interchange of three messages whose plaintext
equivalents are A→ B : M1, B→ A : M2, A→ B : M3, utilizing a
synchronized secret state variables Si.
The order of messages cannot be modified and hence this
exchange is sync-secure !
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So .. it’s Half-Duplex ?
Half-duplex links may not seem ubiquitous to developers due to
the use of the socket programming paradigm. Full-duplex illusion is
often achieved by time-division duplexing.

▶ Half-duplex is physically prevalent on sensor networks, IoT
and last-hop radio links: Bluetooth and IEEE 802.15.4 ZigBee
are half-duplex.

▶ In addition to wireless last-hop transports, most RFID, smart
card [ISO 7816-4, ISO 18000-63], and industrial control
[MODBUS] communications are implemented under a
query-response model and are therefore effectively half-duplex.

▶ Half-duplex links can be established wirelessly with unpaired
frequencies (same frequency in both directions), or with
(twisted-wire / single contact) serial links. These are a typical
scenarios in lightweight time-divide communications, our
specific targets.
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Unambiguous Session Transcripts via Better Domain
Separation

▶ Keccak only has domain separation between data input and
hash output.

▶ Keccak-160/256/512 are distinguished from each other via
different rates r, not via padding or IV; different hardware for
different hash sizes?!

▶ DuplexWrap extended this to domain separation with frame
bits between key material, payload data, and message
authentication tag.

▶ Sakura added further frame bits yet again to facilitate tree
hashing.

We want to have a extensible padding mechanism that allow same
hardware to be used for any purpose.
Key feature in BLNK: originator bits; whether sponge input is from
Alice, Bob, Both (e.g. DH Secret), or none in particular..
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Multiplexing the Sponge
We retain one d-bit word D in Sc for domain separation;
Sc = (Sd || Sc′) with c′ = c− d. The iteration for arbitrary
absorption, squeezing, and encryption is now:

Si+1 = π( Sr
i ⊕Mi || Sd

i ⊕ Di || Sc′
i ).

For decryption we have the following update function:

Si+1 = π( Ci || Sd
i ⊕ Di || Sc′

i ).

In StriBob / BLNK, d = 8 bits. The actual capacity suffers only by
couple of bits.
Even hash and MAC outputs are padded (length padding + domain
separation). This protects against length-extension attacks.
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Multiplex Byte
Depending on protocol state and the intended usage of message
block, multiple bits are set simultaneously. From ref/stribob.h:

Bit Mask When set
0 BLNK_END 0x01 Full input or output block (r bits)
1 BLNK_FIN 0x02 Final block of this domain element
2 BLNK_A2B 0x04 Originating from Alice
3 BLNK_B2A 0x08 Originating from Bob

4-6 BLNK_DAT 0x00 Bulk data for hashing (in)
4-6 BLNK_KEY 0x10 Secret key (in)
4-6 BLNK_NPUB 0x20 Public nonce or sequence no (in)
4-6 BLNK_NSEC 0x30 Secret nonce or sequence no (i/o)
4-6 BLNK_AAD 0x40 Authenticated Associated Data (in)
4-6 BLNK_MSG 0x50 Message Payload (i/o)
4-6 BLNK_MAC 0x60 Keyed MAC (out)
4-6 BLNK_HASH 0x70 Hash (out)
7 BLNK_BIT7 0x80 Reserved for future extensions
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Example: Authenticated Record Protocol Flow (1)
We first absorb and transmit the identities Ia and Ib of Alice and
Bob into the state. These are not encrypted; S0 is IV.
Identifiers Ia and Ib should be random strings of sufficient size (at
least 128 bits).
This is an optional step that helps both parties select the correct
shared secret K.

(S1,M1) = enc(S0, Ia, 0x44) | A→ B : M1

(S2,M2) = enc(S1, Ib, 0x48) | B→ A : M2

S3 = enc(S2,K, 0x1C) | no transmission

K may be from a lightweight asymmetric key exchange method
such as Curve25519 [Bernstein 2006] or derived from passwords.
It is never transmitted, but just absorbed in the secret state to
produce S3 from S2.
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Example: Authenticated Record Protocol Flow (2)

Two random nonces Ra and Rb are required for challenge-response
authentication and to make the session unique.

(S4,M3) = enc(S3,Ra, 0x24) | A→ B : M3

(S5,M4) = enc(S4,Rb, 0x28) | B→ A : M4

We may now perform mutual authentication with tags of t bits:

(S6,M5) = enc(S5, 0
t, 0x64) | A→ B : M5

(S7,M6) = enc(S6, 0
t, 0x68) | B→ A : M6

Checking M5 and M6 completes mutual authentication. By an
inductive process we see that the session secret S7 is now
randomized by both parties and the shared secret is not leaked.
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Example: Authenticated Record Protocol Flow (3)

After this, plaintexts Pa (for A→ B) and Pb (for B→ A) can be
encrypted, transmitted and authenticated by repeating the
following exchange:

(Si+1,Ma) = enc(Si,Pa, 0x54) | A→ B : Ma

(Si+2,Ta) = enc(Si+1, 0
t, 0x64) | A→ B : Ta

(Si+3,Mb) = enc(Si+2,Pb, 0x58) | B→ A : Mb

(Si+4,Tb) = enc(Si+3, 0
t, 0x68) | B→ A : Tb

Due to explicit padding it is easy to show inductively that the entire
message flow is authenticated if appropriate checks are made.
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Semi-Autonomous Hardware

BLOCK IN

PADDING IN

SEND/RECV IN

BLOCK OUT

CLK IN

RST IN

CLR STATE IN

r r

d
Logic and π

ERROR OUT

If we incorporate K management in the comms hardware session
secrets never have to leave (and cannot leave) a specific hardware
component and are inaccessible to MCU/CPU app.
Such separation is very difficult (and costly) to achieve with SSL
and other legacy protocols which generally require CPU/MCU
interaction to create encryption and authentication keys from
session secrets.
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Conclusions on BLNK mode used in STRIBOB
▶ Provably secure lightweight record protocols can be built from

a single π permutation. No need for separte PRF, HMAC,
Block Cipher, and a mode of operation. Significantly reduces
implementation ROM / Flash footprint.

▶ Working memory required to implement the entire two-way
BLNK protocol is only slightly more than b bits for the state.
Legacy protocols require additional storage for two sequence
counters / nonces, authenticators, cipher round keys, etc.

▶ Explicit padding and continuous authentication resolves
synchronization issues and allows straight-forward inductive
security proofs based only on a single assumption.

▶ Provable transcripts: final “state hash” proves the integrity of
an entire transaction rather than an individual message.

▶ BLNK is a class of half-duplex security protocols. Well suited
for IoT, Smart Card, RFID, NFC, and other last-lap security.
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CRO of F-Secure, 29 Apr 2014 when StriCat was released.

Download StriCat Source from my web site:
http://www.stribob.com/stricat

▶ Portable, self-contained,open source, POSIX compliant,
relatively small (couple of thousand lines).

▶ Implementation of secure links over TCP using the BLNK
protocol. Can be used as a secure replacement for netcat.

▶ File encryption and decryption using an authenticated
chunked file format; you can efficiently encrypt a backup
stream up to terabytes in size.

▶ Hashing of files and streams. StriCat can also do 256- and
512-bit Streebog hashes.
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Thank you for your
attention!

More questions?

Finally a small demo if
time and projector
resolution permits.

$ ./stricat -h
stricat: STRIBOB / STREEBOG Cryptographic Tool.
(c) 2013-4 Markku-Juhani O. Saarinen <mjos@iki.fi>. See LICENSE.

stricat [OPTION].. [FILE]..
-h This help text
-t Quick self-test and version information

Shared secret key (use twice to verify):
-q Prompt for key
-f <file> Use file as a key
-k <key> Specify key on command line

Files:
-e Encrypt stdin or files (add .sb1 suffix)
-d Decrypt stdin or files (must have .sb1 suffix)
-s Hash stdin or files in STRIBOB BNLK mode (optionally keyed)
-g GOST R 34.11-2012 unkeyed Streebog hash with 256-bit output
-G GOST R 34.11-2012 unkeyed Streebog hash with 512-bit output

Communication via BLNK protocol:
-p <port> Specify TCP port (default 48879)
-c <host> Connect to a specific host (client)
-l Listen to incoming connection (server)
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