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Outline
� Block cipher basics, overview of their application 
� Requirements to block ciphers and their construction 

principles
� Basics of cryptanalysis: differential, linear, etc.
� Advanced Encryption Standard: construction, advantages 

and disadvantages
� Directions of block ciphers further development: lightweight 

and high-level security
� Newly developed block ciphers providing high level 

security: solutions from the USA, Russia, Belorussia and 
Ukraine

� Construction and properties of perspective cipher for 
Ukraine, speed comparison

� Beyond block cipher security: can encryption be broken if 
we use high-level strength cipher?
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About myself (I)

� I’m from Ukraine (Eastern part of 
Europe), 
host country of Euro2012 football 
championship

� I live in Kharkov (the second largest 
city in the country, population is 1.5 
million people), Eastern Ukraine 
(near Russia),
former capital of the Soviet Ukraine 
(1918-1934)
three Nobel prize winners worked at 
Kharkov National University
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About myself (II)
� Associated professor at Information Technologies 

Security Department at Kharkov National 
University of Radioelectronics
� courses on computer networks and operation 

system security, special mathematics for 
cryptographic applications

� Head of Scientific Research Department at JSC 
“Institute of Information Technologies”
� Scientific interests: symmetric cryptographic 

primitives synthesis and cryptanalysis

� Visiting professor at Samsung Advanced 
Technology Training Institute
� courses on computer networks and operation 

system security, software security, effective 
application and implementation of symmetric 
cryptography
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Block ciphers

� one of the most popular 
cryptographic transformations

� most widely used cryptographic 
algorithms for providing 
confidentiality in commercial 
systems

� symmetric key cryptographic 
transformation

� very often used as main 
construction element for hash 
functions, pseudo random 
number generators (PRNG), 
etc.
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Block cipher encryption: 
electronic codebook mode (ECB)

NB: ECB mode is only used as basic block for more complex transformations
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Block cipher

� Encryption

� Decryption

� Main property for practical implementation

� The same key is used for encryption and 
decryption (opposite to RSA and other public key 
crypto)
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Applications of block ciphers: 
encryption (confidentiality)

� network connections: SSL/TLS 
protocols (AES, Camellia, Triple DES, 
etc. in CBC or GCM modes)

� network traffic: IPsec protocol suite 
(AES, Camellia, Triple DES, 
GOST 28147-89 etc. in CBC, CTR or 
GCM modes)

� storage protection (AES in XTS mode)
� etc.
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Applications of block ciphers: 
integrity

� verification, that the message was not 
modified/forged during transmission via untrusted
channel (Internet, wireless networks, etc.):
� CMAC (Cipher-based Message Authentication Code)
� GMAC (Galois Message Authentication Code), GCM

(Galois/Counter Mode)
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Applications of block ciphers: 
elements of other primitives

� Hash function constructions:
� Miyaguchi–Preneel
� Davies–Meyer
� Matyas–Meyer–Oseas
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Applications of block ciphers:
a permutation in sponge 
construction

� hash function (Keccak/SHA-3)
� message authentication code
� stream cipher
� authenticated encryption
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Ideal block cipher model

� block cipher as a random permutation (fixed key gives one 
permutation)

� number of random permutations: (2n)!, where n is block size 
in bits

� practical implementation is impossible: requires 264·8 = 267

bytes just for simple 64-block encryption using the single key
� real block cipher only takes 2k from (2n)!, where k is key 

length
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Block cipher: requirements 
and construction principles
� must behave like a random substitution (hiding all 

redundancy of plaintext)
� truly random substitution of corresponding size is 

quite ineffective in implementation
� iterative structure : sequential application of 

different weak ciphers gives a strong one
� each plaintext bit and each key bit must have 

influence on each ciphertext bit
� linear and non-linear operations must be used 

(Shannon’s confusion and diffusion)
� only small tables and simple operations

(repeating many times) may be used to archive 
effective implementation
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Practical implementation: 
iterated block ciphers
Repeating weak round function many times.
Main constructions of block ciphers:
� Feistel network
� SPN structure
� Lai-Massey scheme
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Block cipher round function
� Linear and non-linear layers for providing complex input/output 

dependency;
� One or few rounds can be easily broken, but enough will give a 

strong cipher
� Can be implemented:

� S-boxes followed by linear transformations
� sequence of addition, rotation and XOR (ARX-ciphers)
� mix of above variants

Example: Camellia block cipher round function



16

Avalanche effect for block 
ciphers and hash functions

� changing one input bit (plaintext or key) leads to 
changing approximately half output bits (ciphertext) 
at random positions

� non-linear blocks (S-boxes) give complex 
dependency between S-box input bits (diffusion)

� linear blocks (bit permutation, linear bit 
transformations, including MDS matrix multiplication) 
gives “difference spreading” to the rest of S-boxes

� multiple rounds (product cipher) allow to get 
complex non-linear dependencies of all output bits 
on all plaintext and key bits

� avalanche property is very important for strength to 
different cryptanalysis methods
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Practical (computational) security: 
wide spread block ciphers and 
their characteristics
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Legacy block cipher: 
Data Encryption Standard (DES)

� 64 bit block, 56 bit key
� 16-round Feistel

network
� linear key schedule 

(master key bit 
permutation)

� based on IBM 
solution: Lucifer

� NSA improvement: 
decreased key length 
and improved strength 
to different 
cryptanalytic attacks, 
published later
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Legacy block cipher: 
DES round function

� bit expansion E
(32 bit -> 48 bit)

� round key addition 
(XOR)

� S-boxes (substitution 
tables, 6 bit -> 4 bit)

� bit permutation P
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DES S-boxes

… … … … … … … … … … … … … … … …
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DES 
key schedule
� 56 bit of the 

encryption key are 
transformed into 16 
round keys of 48 bit 
each

� cyclic shifts and bit 
permutation of 
encryption key are 
only used

� each round key is 
just a selected and 
permuted bits of 
encryption key
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Data Encryption Standard: 
advantages and disadvantages

� the first publically available worldwide spread cipher 
with practically acceptable strength level

� no effective attacks exploiting internal properties 
completely breaking cipher strength were found (cf.: 
FEAL)

� improved version (TDEA or TripleDES with 168 bit 
key is allowed to be used by NIST together with AES)

� DES can be practically broken with brute-force 
attacks or using precomputed tables due to 56-bit 
key

� slow in software (comparing to AES, etc.)
� not effective as a lightweight solution
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How ciphers are broken: examples 
of basic cryptanalysis methods

� brute force attacks
� precomputed tables (Hellman, rainbow, etc.)
� differential cryptanalysis and modifications

� impossible differentials
� truncated differentials
� rectangle attack
� boomerang attack

� linear cryptanalysis and modifications
� algebraic analysis
� etc.
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Differential cryptanalysis

� very widely applied method of cryptanalysis for block ciphers, 
hash functions, etc.

� learns how the difference propagates via cryptographic 
transformations

� chosen plaintext attack (for most cases)
� the first method for successful analytical attack against DES 

(estimated complexity 247)
� the first publication in open literature appeared in 1990 (IBM 

researches say they discovered it in 1974 and optimized 
DES against it, and NSA already knew about DC then)

� many other attacks are based on differential cryptanalysis
� some ciphers successfully had been practically broken (e.g., 

FEAL) with DC
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Basics of differential 
cryptanalysis

� Difference

� Linear function

� Difference and round 
key addition

� Non-linear function
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Difference distribution table of 
DES S-box (S1)
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Non-linear transformation 
(S-box)

non-zero difference can be formed by limited (not all) 
input and output values:
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Differential cryptanalysis: the 
last round of encryption
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Differential cryptanalysis: 
transformations in the last round 
function

∆X, ∆Y are known 
=> only several 
variants of X 
(not all) are 
possible

R, R’ are known 
(equal to right 
halves of 
ciphertext)

Possible key bits 
values:
K = R ⊕ X
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Differential characteristics: obtaining 
necessary differences on the last round
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Differential characteristics probabilities: 
one round calculation

NB: random independent round keys (hypothesis stochastic equivalence)
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Attack complexity and strength to 
differential cryptanalysis

� Probability of differential characteristic determines 
the required number of chosen plaintext encryptions 
(mathematical expectation)

� Complexity of the attack (classic approach) depends 
on
� maximal probability of difference transformation on S-

box(es)
� number of active S-boxes used in differential characteristic

� Cryptographic primitive is resistant do differential 
cryptanalysis, if the complexity of the attack is higher 
than the brute force search
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Complexity of DES differential 
cryptanalysis
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Linear cryptanalysis

� very widely applied method of cryptanalysis for block 
ciphers, hash functions, etc.

� learns how the non-linear cryptographic 
transformation can be approximated with 
linear/affine equations

� known (not chosen) plaintext attack (for most cases)
� the first practically implemented method for 

successful analytical attack against DES (with 
complexity 243)

� first publication in open literature appeared in 1992 
(against FEAL cipher, then applied to DES)
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S-box: non -linear element and 
its approximation table
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Linear 
approximation of 
several rounds

involving:
� linear approximations 

of S-boxes
� plaintext and 

ciphertext bits
� round keys bits
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Attack complexity and strength to 
linear cryptanalysis

� The required number of plaintext encryptions 
is determined by the probability that linear 
approximation (linear hull) holds

� Complexity of the attack (classic approach) 
depends on
� maximal bias of linear approximation on S-box(es)
� number of active S-boxes used in linear 

approximation for the whole cipher

� Cryptographic primitive is resistant to linear 
cryptanalysis, if the complexity of the attack is 
higher than the brute force search
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Algebraic cryptanalysis

� follows Claude Shannon idea (published 1949) 
“breaking a good cipher should require as much 
work as solving a system of simultaneous equations 
in a large number of unknowns of a complex type”

� known plaintext attack (usually)
� requires small amount of plaintext-ciphertext pairs 

(near to unicity distance)
� usually crypto transformation is described with 

overdefined system of a small (2-3) degree
� several ciphers were successfully broken with 

algebraic attacks
� methods of solving multivariate overdefined systems 

are being improved
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Advanced Encryption 
Standard (AES)
� 128 bits block and 128, 192 or 256 bits key
� developed in Belgium, selected from 15 candidates 

(proposal from the US, Denmark, Germany, Israel, Japan, 
Switzerland, Armenia, etc.) during 4 year public 
cryptographic competition held by US National Institute of 
Standards (NIST)

� adopted as the US standard in 2001
� In 2002 allowed for protection of classified US government 

information
� the most researched cipher ever (in open publications)
� NSA cannot break even AES-128 and employs thousands 

of mathematician for this task (according to Ed.Snowden
files)

� contemporary assumption: strong (practically unbreakable) 
encryption
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Advanced Encryption 
Standard (AES)

� transparent design
� SPN construction (Substitution Permutation 

Network)
� 10, 12 or 14 rounds for AES-128, AES-192 

and AES-256 correspondingly
� quite effective in software (32-bit platforms), 

good for hardware implementation (not taking 
into account lightweight solutions)
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AES: presentation of processing 
bytes as a “cipher state ”
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AES: high -level structure 
(picture for 128 bit key)
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AES: SubBytes transformation
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AES: ShiftRows
transformation
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AES: MixColumns
transformation
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AES: AddRoundKey
transformation
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AES round key generation (key 
expansion)

NB: not all key length (128, 192, 256) must be supported; for many 
applications it’s enough to have the single key length
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AES round key generation: 
RotWord
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AES round key generation: 
SubBytes
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AES round key generation: 
round constant application

NB: without Rcon there would be equal blocks in ciphertext if plaintext and 
keys have equal blocks (1, 2 or 4 bytes repeats in plaintext and key)
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AES round key sequence
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AES effective software 
implementation: 32 -bit platform

� three different operations can be united 
into the single (!) look -up table access:
� SubBytes (non-linear )
� ShiftRows (linear)
� MixColumns (linear)

� cipher consists of look-up table accesses and 
round key additions
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AES recommendation

� symmetric encryption on general purpose platform 
(32 bit, 64 bit) for commercial systems: AES as the 
main cipher is a good solution

� recommended mode for confidentiality is CTR (if you 
don’t use well researched authenticated encryption)

� the longer the key, the slower cipher is (20% slower 
for 192 bits and 40% slower for 256 bits comparing 
to 128 bit key speed)

� for very reliable systems implement AES-256 and 
an additional cipher (e.g., Camellia, Serpent, etc.)

� remember about implementation integrity check for 
plaintext or ciphertext together with encryption
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Advanced Encryption 
Standard

Advantages
� one of the most spread commercial and open 

source solutions all over the world
� high level of practical security
� effective in software
� many hardware accelerators, including Intel 

processors AES instructions
Disadvantages
� theoretical attacks more effective than brute force 

are known
� 32-bit oriented (condition of the AES competition), 

does not take all advantages of the 64-bit platform
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Further development of block 
ciphers: the first direction

Lightweight
� constrained devices: RFID chips, embedded 

medical devices, etc. (number of gates, available 
memory, power consumption and so on)

� acceptable strength level (cipher cannot be 
broken in the near future by small group of 
hackers)

� not intended to be strong against powerful 
adversary keeping theoretical strength for tens of 
years
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Further development of block 
ciphers: the second direction
Governmental-level (high and 

ultrahigh) security
� must be cryptographically strong 
� must have enough security margin to be 

protected (with high level of confidence) 
of newly discovered attacks

� not intended for highly constrained 
devices (used on servers, routers, PC, 
etc.)

� must provide fast encryption
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Newly developed block ciphers 
providing high level security

�Threefish (USA)
�STB 34.101.31-2011 (Belorussia)
�Kuznechik (Russia)
�Kalyna (Ukraine)
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Threefish block cipher

� a main part of Skein hash function (supports 
very big block sizes)

� ARX-cipher (addition, rotation, XOR)
� simple round function, many rounds
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Threefish -512: 4 rounds of the 72
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Threefish round key 
generation



61

Threefish encryption 
performance

Very fast software implementation:
� 4 Gb/s on Intel Core 2 Duo x64
� or 6.1 clocks per byte for encryption
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Belorussian standard 
STB 34.101.31-2011 (Bel-T)

� 128 bit block
� 128, 192 or 256 bit key
� 8-round combination of Feistel network and 

Lai-Massey scheme
� Single fixed S-box (8 bit-to-8 bit) with good 

properties
� no key schedule (parts of encryption key are 

used as round keys; key shorter than 256 bits 
is just padded)

� The latest version adopted in 2011
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Belorussian standard 
STB 34.101.31-2011 (Bel-T)
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The new Russian cipher: 
“Kuznechik ” (“Grasshopper”)
� well-researched AES-like construction (S-boxes, 

ShiftRows, MixColumns)
� 10 rounds of encryption
� MixColumns: a big (16x16) MDS matrix over GF(28)

generated by special method; cf.: AES has the 4x4 MDS 
matrix

� key schedule: Feistel network with constants as its round 
keys; each round gives a round key for the main cipher

� high level of security
� slower in software comparing to other modern block ciphers
� not adopted and officially published (only discussed on 

several conferences in Russia): final version of S-boxes 
and MDS matrix are not disclosed to public yet
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Requirements to the new 
perspective cipher for Ukraine

� block size and key length: 128, 256 and 512 bits 
(high and ultrahigh security level)

� strength against known methods of cryptanalysis

� security margin against future improved attacks
� transparent design

� effective high-speed software implementation on 
the 64-bit platform

� estimated time: at least 30 years (in condition of 
quantum cryptanalysis impossibility)
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Perspective block cipher 
“Kalyna ”

� SPN-construction (AES-like)
� increased size of linear transformation 

matrix
� several S-boxes generated with respect to 

differential, linear and algebraic properties
� quite new construction of key schedule, 

simple in implementation
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“Kalyna ” encryption function
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“Kalyna ”: number of rounds

18––512 (Nb = 8)

1814–256 (Nb = 4)

–1410128 (Nb = 2)

512 
(Nk = 8)

256 
(Nk = 4)

128 
(Nk = 2)

Key length

Block size
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S-boxes for “Kalyna ”
4 different S-boxes (which are not CCZ-equivalent) 

with the following characteristics:

3 (441 equations)Overdefined system degree

24Max. value of linear bias

8Max. value of difference distribution table

7Minimal algebraic degree of component 
Boolean functions

104Nonlinearity

AES S-box: overdefined system degree: 2, nonlinearity: 112, dd: 4

The best known nonlinearity of S-boxes with 3rd degree:

Сrypton, Safer+, Skipjack, SNOW, Twofish, Whirlpool, СS, Anubis, Stribog
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Number of active S -boxes depending on 
required 64-bit processor instructions 
for 4x4 and 8x8 MDS matrix over GF(2 8) for 128 
bit (left) and 256 bit (right) block
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effective implementation on modern 
platforms
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“Kalyna ” encryption function 
design principles
� well known wide trail design strategy (strength to 

differential, linear cryptanalysis, etc.) combined with 
modular pre- and post-whitening

� clear construction, no trapdoors
� new set of S-boxes (without essential algebraic 

structure)
� 64-bit platform operations 

(mod 264 addition, 8x8 MDS matrix)
� direct transformation (encryption) is more often used 

than reverse (decryption)
� effective software implementation
� developed for and most effective on 64-bit platforms
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Optimization for direct 
transformation (encryption)

� block cipher based hashing does not need decryption
� block cipher based pseudorandom number generation does 

not need decryption
� sponge construction does not need block cipher decryption

� most block cipher modes of operation (CTR, OFB, 
CFB, CCM, GCM, etc.) do not need block cipher 
decryption:
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Number of precomputed
tables:

� AES (4 tables)
� 2 tables for encryption
� 2 tables for decryption

� Kalyna (4 tables)
� 1 table for encryption
� 3 tables for decryption

More effective implementation for CTR, 
OFB, CFB, CCM, GCM hashing, PRNG
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Requirements to “Kalyna ” key 
schedule 
� non-linear dependence of every round key bit on 

every encryption key bit
� round key independence
� high computational complexity of encryption key 

recovery even having all round keys 
� strength to all known cryptanalytic attacks on key 

schedule
� absence of weak key worsen cryptographic 

properties
� implementation simplicity (application of round 

transformation only)
� partial protection from side-channel attacks
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“Kalyna ” key schedule
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“Kalyna ” key schedule 
properties

� correspondence to requirements
� all operations are taken from encryption function
� round keys can be generated in order to encryption 

and decryption with the same computational 
complexity

� effective countermeasure against round 
transformation symmetry

� minimal number of constants, their clearness
� key agility is less than 2.5 

(key schedule takes time less than 2.5 encryption of 
one block)

� non-bijective round keys dependency on encryption 
key
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Non-bijective round key 
dependence

� implemented in
� Twofish

(AES competition finalist; key agility > 10)
� Blowfish (widely used in public cryptographic libraries; key 

agility > 10)
� Fox (block cipher developed in Switzerland; key agility > 5)

� key schedule works as PRNG with cryptographic 
properties

� no estimation was published in open literature

{ } { }( )rKKKKP ,...,,## 10≥
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Percentage of unique round 
keys for “Kalyna ”

0.999978512512

0.981684512256

0.999665256256

0.981684256128

0.997521128128

Part of unique round keysKey lengthBlock size

� Advantages:
� good cryptographic properties
� additional protection from different attacks, including side-channel
� high computational complexity of encryption key recovery even having 

all round keys
� Disadvantage: 

� less than 2% of encryption keys might have equivalent keys (highly 
pseudorandom dependence of equivalent keys, if there are any)
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“Kalyna ” (block size 128 bits, 10 
rounds) strength to cryptanalytic 
attacks

212043Boomerang

23Interpolation

26626256Impos. diff.

233+429756Integral

4Trunc. diff.

252,835Linear

negligible25545Differential

MemoryEncryptionsMax. rnds

Attack characteristicsMin. 
rounds for 
prevention

Type of the 
attack

Similar results (enough security margin) are also obtained for 256 and 512-bit block
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“Kalyna ” output sequences NIST STS 
statistical testing

� Even round keys 
generation

� CTR encryption
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Comparison of required operations for 
one byte processing

� GOST 28147-89:
� 72 operations/byte (32-bit memory accesses, modulo 

232 additions, XORs, ANDs, shifts)
� AES-128:

� 45.375 operations/byte (32-bit memory accesses, 
XORs, ANDs, shifts)

� STB (Bel-T):
� 40.5 operations/byte (32-bit memory accesses, 

modulo 232 additions and subtractions, XORs, ANDs, 
shifts)

� Kalyna_128/128:
� 40.375 operations/byte (64-bit memory accesses, 

modulo 264 additions, XORs, ANDs, shifts)
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Encryption performance 
(Windows/Visual C++)
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Encryption performance 
(Linux/gcc )
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Advantages of “Kalyna ” block 
cipher

� has high and ultrahigh level of cryptographic 
security

� based on verified constructions and clear 
solutions

� fast on modern 64-bit processors
� compact software implementation
� perspective for application in common 

cryptographic systems, Internet and banking 
security, cloud computing security, etc.
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Trends in block cipher 
development

� refusing of S-box algebraic structure (reverse 
element in the finite field, etc.)

� increasing size of MDS matrix
� families of ciphers: different block sizes and 

key lengths
� combinations of XOR and modular addition
� application of round function transformation 

for round key generation
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Beyond block cipher security
� mode of operation security

� BEAST attack (CBC mode)

� implementation security
� CRIME/BREACH attacks
� heartbleed bug in OpenSSL
� timing attacks: cache misses
� side-channel attacks
� software vulnerabilities (buffer and heap overflows, etc.)

� high-level protocol security (e.g.: encryption key 
generation)

we need to use highly secure block ciphers, 
but should also pay a lot of attention to 

security of the whole system 


