
 
Secure Requirements
Brenda Larcom <asparagi@hhhh.org>!
With significant contributions from Erik Simmons (Intel) & Eleanor Saitta (ISC Project)

Finse Winter School 2014-05-09

mailto:asparagi@hhhh.org

Agenda

• Motivation!
!
• Theory!
!
• Security Objectives!
!
• Other Security

Requirements

2

• HAZOP Analysis !
!

• Secure Requirements
Checklists!

• Big Requirements up Front!
• Agile

THE PLAN

WHY REQUIREMENTS
MATTER

Motivation

3

Copyright © 2011 Intel Corporation. All rights reserved. 4

What is a Requirement?

A requirement is a statement of:

1. What a system must do (a system function)

2. How well the system must do what it does (a system
quality or performance level)

3. A known resource or design limitation (a constraint or
budget)

A requirement is anything that drives a design choice

More generally,

Why should organizations care
about requirements?

5

IT 'S ALL DOWNHILL FROM HERE

Why should organizations care
about requirements?

6

MISTAKES ARE EXPENSIVE

Why should security stakeholders
care about requirements?

7

LESS FUSS, MORE THINGS YOU WANT

Security
Advocate

Development
Team

Business Owner

- New high-risk service or
product!
- Plan to launch next week!
- No thought to security!
- I'm supposed to secure this
before launch?!
- We'll have to delay to fix
these critical security issues

- Everyone agreed on what
to build!

- We built that!
- You want a last-minute

delay to fix "bugs" none of
our users would actually
encounter?

- We can't afford to delay
launch!

- Fix what you can this week!
- Ship it & hope for the best

8

What requirements
appeared in other
talks this week?

CONCEPTS

Theory

9

Development Lifecycles

10

WATERFALL

Development Lifecycles

11

AGILE

Copyright © 2011 Intel Corporation. All rights reserved. 12

Requirements Engineering

Requirements Engineering is the systematic and repeatable use of
techniques for discovering, documenting, and maintaining a set of
requirements for a system or service.

Requirements Engineering Activities

Elicitation!
!

Gathering
requirements

from
stakeholders

Analysis &
Validation!
Assessing,
negotiating,

and ensuring
correctness of
requirements

Specification!
!

Creating the
written

requirements
specification

Verification!
!

Assessing
requirements

for quality

Management!
!

Maintaining
the integrity

and accuracy
of the

requirements

Necessary & Sufficient

Necessary!
!

• Problem Domain!
• Objects!
• Relationships!
• Workflow!

• Interfaces!
• Design Constraints

13

Sufficient!
!
• Guide the current

activities of all team
members at an
acceptable risk level!

• Allow the person
downstream as much
flexibility as possible

SPECIFICATION

Requirements

14

TAXONOMY

Functional vs. Non-Functional

15

• Distinction: How is it measured?!
!
• Functional requirements!

• Boolean!
• Syntax: [Trigger] [Precondition] Actor Action [Object]!!

• Non-functional requirements!
• Along a scale or interval!
• Typically specify at least scale, meter, minimum, target, maximum!
• Scale - Units of measure, e.g. centimeters!
• Meter - Device or process to measure position on the scale, e.g. measuring tape

SPECIFICATION

Scales

16

• Three types of scales (in order of preference):!
• Natural: Scales with obvious association to the measured quality!
• Constructed: A scale built to directly measure a quality !
• Proxy: An indirect measure of a quality

ANALYSIS

Natural Signal to jammer interference (noise) ratio

Constructed Effort expended in the preparation and execution of the attack,
graded as “no rating“, “minimal”, “basic”, "enhanced-basic,”
“moderate” or “high”

Proxy Percentage of developers who have received security training

• The equipment cabinet must take at least 10
minutes to disassemble using common household
tools.

Are these security requirements?

17

• The software shall be unable to determine the
position of the Logic & Accuracy Testing switch.

EXAMPLE

• The booth door shall remain locked until the
transcript has finished printing.

• The equipment cabinet must take at least 10
minutes to disassemble using common household
tools.

Are these requirements secure?

18

• The software shall be unable to determine the
position of the Logic & Accuracy Testing switch.

EXAMPLE

• The booth door shall remain locked until the
transcript has finished printing.

19

Can a single
requirement be
secure?

Secure Requirements vs.!
Security Requirements

20

• Security requirement - A requirement that describes
a security property, technology, or action!
!

• Secure requirements - The requirements, taken
together, will result in a system that meets its
stakeholders' security needs!

• E.g. any remaining underspecification will
have no effect on system security

SUBTLE, BUT CRITICAL

Copyright © 2011 Intel Corporation. All rights reserved.

Attributes of a Good Requirement

21

• Complete: A requirement is complete when it contains sufficient
detail for those that use it to guide their work!

• Correct: A requirement is correct when it is error-free!

• Concise: A requirement is concise when it contains just the
necessary information, expressed in as few words as possible!

• Feasible: A requirement is feasible if there is at least one design and
implementation for it!

• Necessary: A Requirement is necessary when it:
• Is included to be market competitive
• Can be traced to a stakeholder need
• Establishes a new product differentiator or usage model
• Is dictated by business strategy, roadmaps, or sustainability

Copyright © 2011 Intel Corporation. All rights reserved.

Attributes of a Good Requirement

22

• Prioritized: A requirement is prioritized when it is ranked or ordered
according to its importance!

• Unambiguous: A requirement is unambiguous when it possesses a
single interpretation!

• Verifiable: A requirement is verifiable if it can be proved that the
requirement was correctly implemented!

• Consistent: A requirement is consistent when it does not conflict with
any other requirements at any level!

• Traceable: A requirement is traceable if it is uniquely and persistently
identified with a Tag

23

What else do good
requirements need
to be secure?

Secure Requirements

24

• Separate process for managing security
requirements, a la SQUARE!

• Existing requirements engineering processes seem to work fine!
• Development teams are extremely resistant to process change!!

• Requiring a specific SSDL!
• Development teams are extremely resistant to process change!
• Frequently, process requirements turn into inefficient & ineffective checkboxes!!

• Requiring resistance to specific types of attack!
• Fails open if you miss anything!
• Quickly obsolete

NOT MY APPROACH I

Secure Requirements

25

• Misuse & abuse cases!
• Oriented towards modeling attack goals, vs. defense goals!
• Regression issues with Agile teams (implement & forget)!
• Insufficiently structured to identify enough edge cases to be safe!
• Doesn't address overall high-level goals!!

• Formal methods for verifying security requirements
or validating implementations!

• Don't know how to apply in industry (but maybe y'all do)

NOT MY APPROACH I I

Secure Requirements

26

• Security objectives !
• High-level security goals that express stakeholders' intent to defend!!

• Review checklists!
• Objective criteria for whether requirements can meet the security objectives!
• No process change required!
• Multiple versions, for Agile vs. waterfall!!

• HAZOP analysis!
• Structured method for identifying process variations that could affect security

objectives

MY APPROACH

DEFINING SECURE
ENOUGH

27

Security Objectives

Anatomy

28

D E F I N I T I O N

Initial System
Configuration

Attacker Starting
Privileges Prohibited Actions

Intended System
Response

State of the system
before an attack
begins, in order for
protection to apply

What the attacker(s)
can already do before
starting to attack

What stakeholders
want to prevent the
attacker(s) from doing

What the system
should do if the
attacker(s) try to
achieve one of the
threats

When the initial configuration holds, the system shall
not allow attackers to take the prohibited actions. If
such an attack is attempted, the system shall
response instead.

Example

29

When implemented as designed, the system shall not
allow anonymous internet attackers or mileage plan
members to book flights without paying, book flights
in violation of fare rules, or grant travel vouchers. If
such an attack is attempted, the system shall thwart
the attack.

D E F I N I T I O N

Elicitation, Analysis & Specification

30

"PROCESS"

• Quick[er]!
• Brainstorming-based

approach could miss
something!

• Hard[er] to be sure of
semantic agreement!

• More formal process
is based on Trike

Prohibited Actions

31

• Threats!
• In the sense of "what could possibly go wrong?"!!

• [Action] [Object] [Condition]!
!

• Brainstorm or derive from functional requirements!
!

• Prohibited actions are the subset of threats that
would hurt stakeholders most!

• If it doesn't hurt a stakeholder, there's no need to defend against it

IN-SCOPE THREATS

In-Scope Attackers

32

• Focus on attacker starting privileges!
• What can each attacker already do before she launches an attack?!
• Where is she, logically & physically?!
• What does she know?!
• What does she have?!!

• Assume conspiracy!
!
• Ignore motivation!

• People you don't know are inscrutable!
• The point is not to thwart the attacker, it is to defend yourself!!

• Resource: Intel's Threat Agent Library

MINIMIZE MODELING

Intended System Response

33

T A X O N O M Y

Response Meaning Applicability
Prevent Stop the attack before it

gets to the target system
• Implies the existence of a filter (e.g. a firewall) in a

different scope from the target

Thwart Stop the attacker from
achieving the threat

• Most common intended response

Detect Notice the attack is
happening

• Not always possible or worth the effort!
• Implies a next step (e.g. log or alert)

Log
Take notes someone can
look into later

• Implies detect!
• Required if system owners may want to pursue

legal action

Alert
Tell someone right now • Implies detect!

• Useless unless someone is monitoring!
• Required if human intervention is the next step

Rate Limit
Let the attack succeed,
but not too often or too
quickly

• Frequently implies detect!
• Especially useful to respond to denial of service

Initial System Conditions

34

• What state does the system need to be in before it
can defend against this attacker trying to reach this
threat?

CAVEATS

Stakeholders

35

P A R T I C I P A N T R O L E S

Name Description Contribution
Product
Owner

Individual who contributes business
requirements and makes decisions about
scope

Do we want that?

Architect Individual performing high-level design work
and large scale system engineering

Can we build that?

Operations If the project will be deployed in-house or as a
service, individual performing or managing
deployment and maintenance of the system

Can we do that?

Security Individual who represents security concerns
during development of a project

Would that be safe enough?

Functional or Non-Functional?

36

When implemented as designed, the system shall not
allow anonymous internet attackers or mileage plan
members to book flights without paying, book flights
in violation of fare rules, or grant travel vouchers. If
such an attack is attempted, the system shall thwart
the attack.

E X A M P L E

Functional to Non-Functional

37

G E T T I N G T H E R E

Initial System
Configuration

Attacker Starting
Privileges Prohibited Actions

Intended System
Response

State of the system
before an attack
begins, in order for
protection to apply

What the attacker(s)
can already do before
starting to attack

What stakeholders
want to prevent the
attacker(s) from doing

What the system
should do if the
attacker(s) try to
achieve one of the
threats

When the initial configuration holds, the system shall
not allow attackers to take the prohibited actions. If
such an attack is attempted, the system shall
response instead.

Security Metrics Now

38

• Number of [known]
security defects
(probably by severity)!

• Number of [known]
security incidents!

• Percentage of
developers who have
received security
training

• No standard for what
counts as a security
defect!

• Cannot be measured
until development,
even deployment, is
complete!

• Measuring secondary
indicators

S C A L E S & M E T E R S

Security Metrics Someday

39

S C A L E S & M E T E R S

Security Metrics Someday

40

S C A L E S & M E T E R S

41

Other Security Requirements
DESIGN CONSTRAINTS

Design Constraints

42

• Explicit stakeholder requests!
• E.g. required technology, processes!!

• Standards & regulations!
• If standard is new to devs, or difficult to understand, or not traceable, call out the

specific requirements vs. incorporating by reference!!
• Other requirements for this system!

• Keep derived requirements to a minimum

SOURCES

43

HAZOP Analysis
DETAILS THAT PROBABLY

BITE

What – Overview

44

• HAZOP = Hazardous Operations!
!

• Systematic method for identifying which variations
in a process need to be mitigated for safety!

• Repurposed for security by Thitima Srivatanakul, John A. Clark and Fiona Polack
from University of York!

!
• Partially replaces threat and attack trees !

• HAZOP analysis results include threat tree leaf nodes

What is HAZOP analysis?

How – Process Overview

45

• Preparation!
• Set security objectives (Actors, Data Model, Intended Actions, Threats, Security

Objectives)!
• Document use case or other sequence of steps (Actors, Data Model, Use Case

Details A-L)!

• HAZOP analysis!
• Vary each element of each step (Use Case Details M-P)!
• Analyze meaningful variations for security implications (Use Case Details Q-AE)!

• Use HAZOP analysis results!
• Plan mitigations (usually, update requirements or design)

What do I do?

What – Example Overview

467

What should it look like before I start?

What – Example Overview

479

What should it look like before I start?

How – Varying a Step

48

• Pick a step!
• Pick an element!

• Actor, Action, Object, or Condition? (Use Case Details M)!

• Pick a guide word!
• NO, AS WELL AS, PART OF, OTHER THAN, MORE, LESS, BEFORE, AFTER

(Use Case Details N)!
• Figure out what this variation means, if anything!

• Document all meanings (Use Case Details O and P)!!
• Productivity tips!

• Vary elements in the same order each time!
• Apply guide words in the same order each time!
• Vary depth-first (all guide words for one element, then all for the next element)

I assembled all that stuff. How do I get started?

What – Example Variation

4911

How should varying a step turn out?

How – Analyzing a Variation

50

• Can this variation help an attacker?!
• Decide separately for each security objective (Use Case Details Q-AC)!

• If the variation can help an attacker, can an
attacker* cause or influence it? (Use Case Details AD-AE)!

!
* Not necessarily the same attacker. Assume collaboration!!!!!!
• Productivity tips!

• Finish all variations for a step (maybe even use case) before analyzing variations

I’ve got a variation. Now what?

What – Example Analysis

5113

How should analyzing a variation turn out?

How – Shortcuts

52

• Factor common portions of use cases out into a
separate use case!

• Don’t document variations that won’t get you
anything!

• Variations that are equivalent to earlier variations!
• Variations you know are not helpful to an attacker, or not controllable by an

attacker*!

• Claim that variations you know are pure
implementation issues are not attacker-influenced!

!
* This has a reviewability penalty and may cause you to miss issues; do 3-10 use cases

before you try it.

Isn’t that going to be awfully repetitive?

How – Using the Results

53

• Plan and prioritize mitigations (Use Case Details AF-AI)!

• Plan implementation reviews!
• Security code reviews (Use Case Details some from AE, some from AG)!
• Security test coverage (Use Case Details some from AG)!
• Penetration tests (Use Case Details AD-AE, some from AF-AI)

Dude, that’s a lot of data.

54

Secure Requirements!
Checklists

REVIEWING
REQUIREMENTS FOR

SECURITY

Requirements Security Checklist

55

• Use to review all requirements, including security
objectives!

• Collaboration with Erik Simmons at Intel starting in
2006!

• First release to anyone outside Intel!
• Hopefully soon to be updated

BIG REQUIREMENTS UP FRONT

Requirements Security Checklist

56

Complete ...!
• All stakeholders affected by the product’s security have reviewed the requirements.!
• At least one security subject matter expert has reviewed the requirements.!
• All user classes are explicitly documented. Common classes include end users, IT users,

administrative users, maintenance users, indirect users, unauthenticated users,
anonymous users, and other systems which connect directly to the system.!

• All intended system interfaces that cross the system-universe boundary (external
interfaces) are explicitly listed. Common examples of interfaces include pins, wiring
terminals, buses, user interface hardware, APIs, and network connections.!

• Each user class is specified to communicate with the system via one or more of the
system’s external interfaces and each external interface has at least one user class
assigned to it.!

• Stakeholders have agreed on the set of assets that the system manipulates, and
therefore may require protection.!

• All allowed, required, and prohibited relationships among assets are depicted within the
requirements. Common relationship types related to security include is a (for example,
bicycles are vehicles), has a (for example, bicycles have two wheels) and business rules
involving multiple assets (for example, order total is always the sum of the items on the
order).

Requirements Security Checklist

57

... Complete ...!
• The functional requirements include all conditions affecting whether each function is

allowed from within each system state. Common conditions include permissions,
business rules, time restrictions, simultaneous events that are allowed or disallowed,
relative position in a sequence of actions, pre-conditions and post-conditions.!

• The functional requirements include what must occur when the system encounters invalid
data.!

• Stakeholders have agreed on the set of security events to which the system must
respond. Security events include access violations, many exceptional events, and some
events within intended system functionality such as access to critical or confidential
assets. For example, all accesses to employee salary data are security events, whether
proper or improper.!

• Each documented security event includes prescribed system response. Common
responses include log the event, deny the event, and alert a user.!

• For each event log entry expressed or implied by other functional requirements, the
requirements also include conditions affecting whether access to log entries is allowed
(even if that access will be implemented using only built-in functionality of underlying
subsystems).

Requirements Security Checklist

58

... Complete!
• For each event log entry expressed or implied by other functional requirements, the

requirements include a description of the allowed and required contents of the log entries.!
• The requirements explicitly specify all privacy and security standards and regulations to

which the system must adhere.!
• Stakeholders have agreed on the set of attackers, their initial privileges, and the end

goals the product must defend against each attacker.!!
Verifiable!
• There are 12 or fewer assets. Even better is 7 plus or minus 2. More than that is too

complex for humans to understand and analyze at once and must be considered a risk.!
• The scale and meter specified by the non-functional security requirement will yield similar

measurements for different security validation teams working on the same product.

Requirements Security Checklist

59

Feasible!
• No attacker’s initial privileges as described within the requirements include that attacker’s

end goals. For example, if all Users shall be able to read all Status_Reports, the
requirements cannot also specify that the system shall prevent an attacker with User
privileges from reading any Status_Report. !

• Based on the conditions affecting each function described in the requirements, no
legitimate sequence of actions that can be taken starting from an attacker’s initial
privileges can reach that attacker’s end goals. For example, if any Anonymous user shall
be able to immediately create a User account (with no approval, verification of identity,
payment, or other business rule), and all Users shall be able to read all Status_Reports,
the requirements cannot also specify that the system shall prevent an attacker with
Anonymous privileges from reading any Status_Report.!

• The non-functional security requirements are feasible based on an analysis of system
requirements.!

• The initial privileges (including physical access, or lack thereof) assigned to each attacker
is plausible in light of expected system usage.

Requirements Security Checklist

60

Prioritized!
• Each requirement which is included or modified for security is clearly marked.!!
Unambiguous!
• Each user class has consistent, explicitly defined duties and privileges. That is, if any

member of User Class A can (or must) do something, every other member of User Class
A in an identical situation can (or must) also do that.!

• When conditions affecting whether a function is allowed are enumerated, the conditions
are completely specified. For example, if the action is allowed when x < 0 and prohibited
when x > 0, the requirements must also specify what must happen if x = 0. !

• Exception: The context specifies a default (either allow or prohibit the action).!
• System states & conditions that purposefully do not require any particular system

response are explicitly specified. !
• The entire lifecycle of each asset (i.e. what causes it to become present in the system, its

initial state, and sequences of user actions that can be performed on it until it is no longer
present in the system) has been documented.

Requirements Security Checklist

61

Consistent!
• Each user class is allowed to perform at least one action within the requirements.!
• No two user classes have identical duties and privileges.!

• Exception: There is reason to believe the duties and privileges of these user
classes will diverge in the lifetime of the system being described.!

• Exception: The two categories of users have different intents within the system. !
• The system requirements perform at least one action on each asset. If this is not the

case, either something is improperly called an asset, or there are missing functional
requirements that affect the asset.!

• If one asset class has an is a relationship with another class, the first asset class must be
a proper subset of the second. For example, if bicycles are vehicles and bicycles and
vehicles are both classes of assets, all bicycles must be vehicles. If this is not the case
(for example, the system will consider stationary bicycles to be bicycles, but not vehicles),
one of the asset classes may be improperly called an asset.!

• The conditions necessary for the system to allow each function do not contain a paradox.!
• The conditions necessary for the system to prohibit each function do not contain a

paradox.

User Story Security

62

• Sets of criteria that work together!
• Applied at different times during agile development!
• Developed at Bishop Fox for several customers!

!
• User Story Security Risk Levels!
• User Story Collection Security Checklist!
• User Story Defined Security Checklist!
!
• Security Additions to the Definition of Done!
• Security Objectives Checklist!

• Current work in progress

AGILE

User Story Security Risk Levels

63

This story, if implemented as described, will allow an
attacker to violate the application’s security
objectives. !
A story should receive this risk rating if either of the following are true:!!

• The role, feature, and benefit of the story directly contradict the product’s security
objectives.!

• The user story implies one or more variations that, taken independently of other
stories that remain on the product backlog, would allow an attacker to violate one
or more security objectives, and nothing in the application, done definition, or user
story stops the attacker from receiving this benefit, causing the variation, or waiting
for the variation to occur.

VIOLATES SECURITY OBJECTIVES

User Story Security Risk Levels

64

This story, if implemented as described, could help
an attacker to violate the application’s security
objectives, but something else would also have to go
wrong for the attacker to succeed. !
A story should receive this risk rating if either of the following are true:!!

• The user story implies one or more variations that, taken independently of other
stories that remain on the product backlog, would allow an attacker to violate one
or more security objectives, but the user acceptance criteria prevent the attacker
from receiving this benefit, causing the variation, or waiting for the variation to
occur.!

• The user story implies one or more variations that, if an attacker could cause them
to occur, would help an attacker to violate one or more security objectives, and
nothing in the application or the definition of done stops an attacker from receiving
this benefit, causing the variation, or waiting for the variation to occur.

INCREASES SECURITY RISK

User Story Security Risk Levels

65

This story, if implemented as described, will neither
increase nor reduce attackers’ ability to violate the
application’s security objectives. !
A story should receive this risk rating if any of the following are true:!!

• The user story implies no variation that would help an attacker to violate any
security objective.!

• The user story implies one or more variations that, if an attacker could cause them
to occur, would help an attacker to violate one or more security objectives, but
existing mitigations in the application stop an attacker from receiving this benefit,
causing the variation, or waiting for the variation to occur.!

• The user story implies one or more variations that, if an attacker could cause them
to occur, would help an attacker to violate one or more security objectives, but the
done definition stops an attacker from receiving this benefit, causing the variation,
or waiting for the variation to occur.

SECURITY RISK-NEUTRAL

User Story Security Risk Levels

66

This story, if implemented as described, will reduce
attackers’ ability to violate at least one security
objective. !
A story should receive this risk rating if all of the following are true:!!

• The user story has a security-related benefit.!
• The user story does not violate the security objectives or increase security risk.

REDUCES SECURITY RISK

User Story Collection!
Security Checklist ...

67

By the time a project’s initial push to gather user stories is complete, the application’s story
backlog plus its already-implemented user stories (together, the user story collection)
should continuously meet these criteria:!!
• There is at least one user story from the perspective of each administrator the system is

expected to require (e.g. a system administrator, an application administrator).!
• There is at least one user story in which an administrator deploys or updates the

application.!
• For each related, but out of scope, system on which the application depends, or with

which the application communicates (e.g. the operating system, third party shared
libraries that are expected to be deployed independent of the application_, the database
server), there is at least one user story in which an administrator updates the
dependency.!

• For each external resource used by the application (e.g. URLs, cryptographic keys,
service account names), there is at least one user story in which an administrator
configures this resource.

... User Story Collection!
Security Checklist ...

68

• For every security setting or event of security interest_ that appears in a user story, !
• There is at least one user story that describes discovering problems that are

caused by that setting or event (e.g. a network operations center employee getting
an alert about excessive connection attempts, an administrator noticing that a
certificate has expired, a user entering the wrong username or password and
receiving an error message).!

• There is at least one user story that describes debugging a problem that is affected
by that setting or event (e.g. an administrator determining who tampered with
application data, a user determining that their cryptographic key file or an enclosing
directory needs more restrictive permissions).!

• There is at least one user story in which a user solves a problem that is affected by that
setting or event (e.g. an administrator resetting a user’s password).!

• Unless all application features and data are intended to be publicly and anonymously
accessible, there is at least one user story in which a user allows additional access to the
application, or its features, or its data (e.g. an administrator adding a user to a role).!

• For every feature or data with a user story in which a user allows access, there is also a
user story in which a user restricts access (e.g. if a document owner gives permission to
access a document, some user revokes permission to access a document).

... User Story Collection!
Security Checklist

69

• For every variation that is both implied by a user story and could help an attacker violate
a security objective__, there is a mitigating user story whose user acceptance criteria
describe the scenario and refer to the implying user stories and the security objective the
unmitigated variation would help violate.!

• For every user story that violates the security objectives or increases security risk, there
is a corresponding user story that reduces the security risk_.!!

There is no need to stop with just one of each of these kinds of user stories. Overall, the
intent of this checklist is to ensure that user stories that would increase the application’s
security are available for discussion and prioritization.

User Story Defined!
Security Checklist ...

70

Before a user story is pulled into a sprint_, business stakeholders, developers, and testers
must agree that the user story meets all of the following criteria:!!
• The role and acceptance criteria unambiguously communicate the criteria that must be

met before the system should allow access to the feature. !
• If the feature will affect or refer to objects that feature prominently in the project’s domain,

the feature and its acceptance criteria describe all such references and effects.!
• If the story is intended to provide a security benefit, address known security issues,

reduce security-related technical debt, or mitigate specific threats, this motivation is
clearly documented in the benefit of the story. Example: “As a system administrator, run
the system without obsolete versions of library X so that attackers cannot exploit known
vulnerabilities [to violate the security objectives]”. Example: “As a registered user, I can
log in with my username and password so that I am the only one who can see or manage
my bank account”.!

• The feature described would provide the benefit described. Counter-example: “As a
registered user, I can log in with my username and password so that I can trust the
system_” fails this test because logging in allows the system to trust the user, not vice
versa.!

• If the story will mitigate a known vulnerability in a third-party library, the date the
vulnerability was publicly announced is included in the user story.

... User Story Defined!
Security Checklist

71

• Variations on the user story have been systematically considered for security
implications_.!

• The acceptance criteria mention all variations of this user story that could help an
attacker violate a security objective, and refer to a user story that mitigates each variation
that this user story does not.!

• Variations that could help an attacker violate a security objective are tagged with whether
an attacker could cause or wait for the variation to occur.!

• A security risk level_ has been assigned.!!
Overall, the intent of this checklist is to ensure that all stakeholders have the same
understanding of the constraints that are likely to affect the security design of this feature,
and that the user story contains enough information about security to accurately inform
prioritization decisions.

Thank You

72

