
Bro intrusion detection system -
Principles of operation and

internal structure

Slobodan Petrović
NISlab, Gjøvik University College

Overview of IDS/IPS
• Intrusion

– A set of actions aimed at compromising the
security goals (confidentiality, integrity,
availability of a computing/networking resource)

• Intrusion detection
– The process of identifying and responding to

intrusion activities
• Intrusion prevention

– The process of both detecting intrusion activities
and managing responsive actions throughout the
network

2/269

Overview of IDS/IPS
• Intrusion detection system (IDS)

– A system that performs automatically the process
of intrusion detection

• Intrusion prevention system (IPS)
– A system that has an ambition to both detect

intrusions and manage responsive actions
– Technically, an IPS contains an IDS and combines

it with preventive measures (firewall, antivirus,
vulnerability assessment) that are often
implemented in hardware

3/269

Overview of IDS/IPS
• Basic assumptions regarding operation of IDS

– System activities are observable
– Normal and intrusive activities have distinct

evidence – the goal of an IDS/IPS is to detect the
difference

4/269

Data pre-processor

Incoming
traffic/logs

Activity data

Detection
 model(s) Detection algorithm

Alerts

Decision
 criteria Alert filter

Action/Report

System activities are
observable

Normal and intrusive activities
have distinct evidence

Components of an IDS/IPS

5/269

Components of an IDS/IPS
• Data pre-processor

– Collects and formats the data to be analyzed by
the detection algorithm

• Detection algorithm
– Based on the detection model, detects the

difference between ”normal” and intrusive traffic

6/269

Components of an IDS/IPS
• Alert filter

– Based on the decision criteria and the detected
intrusive activities, estimates their severity and
alerts the operator/manages responsive activities
(usually blocking)

7/269

IDS/IPS classification
• By scope of protection (or by location)

– Host-based IDS
– Network-based IDS
– Application-based IDS
– Target-based IDS

• By detection model
– Misuse detection
– Anomaly detection

8/269

IDS classification
• Host-based

– Collect data from sources internal to a computer,
usually at the operating system level (various logs
etc.)

– Monitor user activities
– Monitor execution of system programs

9/269

IDS classification
• Network-based

– Collect network packets
• This is usually done by using network devices that are

set to the promiscuous mode
– A network device operating in the promiscuous mode

captures all network traffic accessible to it, not just that
addressed to it

– Have sensors deployed at strategic locations
– Inspect network traffic
– Monitor user activities on the network

10/269

IDS classification
• Application-based

– Collect data from running applications
– The data sources include application event logs

and other data collections internal to the
application

11/269

IDS classification
• Target-based (integrity verification)

– Generate their own data (by adding code to the
executable, for example)

– Use checksums or cryptographic hash functions
to detect alterations to system objects and then
compare these alterations to a policy

– Trace calls to other programs from within the
monitored application

12/269

IDS classification
• Misuse detection (1)

– Involves gathering information about indicators of
intrusion in a database and then determining
whether such indicators can be found in incoming
data

13/269

IDS classification
• Misuse detection (2)

– To perform misuse detection, the following is
needed
•A good understanding of what constitutes a

misuse behaviour (intrusion patterns, or
signatures)

•A reliable record of user activity
•A reliable technique for analyzing that record of

activity (very often – pattern matching)

14/269

IDS classification

15/269

Intrusion
patterns
(signatures)

Activities

Analysis (e.g.
pattern
matching)

Intrusion

Signature example: if src_ip = dst_ip then “land attack”

• Misuse detection (3)

IDS classification
• Misuse detection (4)

– It is best suited for reliably detecting known
misuse patterns (by means of signatures)

– It is not possible to detect previously unknown
attacks - a single bit of difference in misuse
patterns may be enough for an IDS to miss the
attack

– However, it is possible to use the existing
knowledge (for instance, of outcomes of attacks)
to recognize new forms of old attacks

16/269

IDS classification
• Misuse detection (5)

– Misuse detection systems sometimes generate
alerts even if the activities are normal (normal
activities often closely resemble the suspicious
ones)

– Consequently, IDS that use signature detection
are likely to generate a lot of false positives

– Careful adjustment of the IDS parameters is
needed to reduce the number of false positives

17/269

IDS classification
• Misuse detection (6)

– New attacks require new signatures
– The increasing number of vulnerabilities causes

that signature databases grow over time
– Every packet must be compared to each signature

for the IDS to detect intrusions
– This may become computationally expensive as

the bandwidth increases

18/269

IDS classification
• Misuse detection (7)

– When the bandwidth overwhelms the capabilities
of the IDS, it causes the IDS to miss or drop
packets

– In such a situation, false negatives are possible

19/269

IDS classification
• Anomaly detection (1)

– Involves a process of establishing profiles of
normal user/network behaviour, comparing actual
behaviour to those profiles, and alerting if
deviations from the normal behaviour are
detected

– The basis of anomaly detection is the assertion
that abnormal behaviour patterns indicate
intrusion

20/269

IDS classification
• Anomaly detection (2)

– Profiles are defined as sets of metrics - measures
of particular aspects of user/network behaviour

– Each metric is associated with a threshold or a
range of values

21/269

IDS classification
• Anomaly detection (3)

– Anomaly detection depends on an assumption
that users/networks exhibit predictable,
consistent patterns of system usage

– The approach also accommodates adaptations to
changes in user/network behaviour over time

22/269

IDS classification
• Anomaly detection (4)

– The completeness of anomaly detection depends
on the selected set of metrics – it should be rich
enough to express as much of anomalous
behaviour as possible

– Capable of detecting new attacks

23/269

IDS classification
• Anomaly detection (5)

– An attacker can replicate a misuse detection
system and check which signatures it detects

– Then the attacker can use the attack not
detectable by the IDS in question

– This is not possible to do with an anomaly
detection system

24/269

IDS classification
• Anomaly detection (6)

– However, it is not always the case that abnormal
behaviour patterns indicate an intrusion –
sometimes, rare traffic sequences represent
normal behaviour

– This is a major problem in anomaly detection –
false positives

– If anomaly detection IDS thresholds are set too
high, we may miss the attacks and have false
negatives

25/269

IDS classification

26/269

Profiles of
normal
behaviour

Activities

Analysis
Intrusion

• Anomaly detection (7)

IDS classification

27/269

• Anomaly detection (8)
– In misuse detection, the analysis engine alerts if

the analyzed activity matches an entry in the
signature database

– In anomaly detection, the analysis engine alerts if
the analyzed activity does not match any of the
established profiles of normal behaviour

– In both cases, search through the whole database
is needed for each analyzed activity (e.g. for each
packet)

IDS classification
• Anomaly detection (9)

– Methods of anomaly detection
• Statistical methods
• Artificial intelligence (cognitive science,…)
• Data mining
• Mathematical abstractions of biological systems (neural

nets, immunological system simulation, process
homeostasis…)

• Etc.

28/269

IDS classification
• The fundamental debate between proponents

of anomaly detection and proponents of
misuse detection
– Overlap of the regions representing "normal" and

"misuse “ activities

29/269

IDS classification
• The proponents of anomaly detection assert

that the intersection between the two regions is
minimal

• The proponents of misuse detection assert that
the intersection is quite large, to the point that
given the difficulties in characterizing "normal”
activity, it is pointless to use anomaly detection

30/269

IDS classification
• The solution of this problem is in combining

the two detection models
• Although the IDS/IPS manufacturers do not

publish the details of their designs, it is quite
probable that they combine misuse detection
and anomaly detection approach in their
solutions

• An example of an IDS that combines these
models - Bro

31/269

Bro fundamentals

• Bro – a network monitoring tool
– Not (only) an IDS
– Focuses on application-level semantics

• The goal is not to alert on occurrences of traffic
patterns identical to known attack signatures

• Instead, purpose of traffic patterns is interpreted
– Example

» If an attack is in progress, it is not recognized by exact
matching of an attack signature with current traffic

» Rather, Bro interprets traffic (e.g. by heuristics) as the
one whose purpose is to attack

32/269

Bro fundamentals

• Bro rarely analyzes a single packet
• To conclude about purpose of the traffic at

hand, several packets are analyzed in order to
establish context

• From the received packet sequence, Bro
generates events
– Neutral, i.e. not labeled as “good” or “bad”

• Labeling of events is performed in the Policy
script interpreter

33/269

Bro fundamentals

• Several ready-made scripts for determining
purpose of the received traffic are present in
Bro
– However, it is supposed that the operator writes

the scripts that implement a policy defined in
advance

34/269

Bro fundamentals

• There is a possibility of using low-level Snort-
style signatures in Bro
– For this, Bro uses an independent signature

language
– When Bro uses signatures, it is converted into a

classical misuse detection system
• However, since other open-source misuse detection

systems, such as Snort, are so different from Bro, it is
not possible to convert their signatures (for example
Snort rules) directly to Bro signatures

35/269

Bro fundamentals

• There is no external source of Bro signatures
– The operator must write all the signatures that

will be used in Bro by himself, unlike Snort or
Suricata signatures that are written by a
specialized organization and maintained regularly

– This limits the practical use of signatures in Bro
• There existed a converter of Snort rules to Bro

signatures (Snort2Bro), but it is now discontinued

36/269

Bro fundamentals

• The Bro scripts can be written in such a way
that the system behaves like an anomaly
detection system

• However, Bro is neither misuse nor anomaly
detection system by default

37/269

Bro fundamentals

• Bro always logs all the activity, which is useful
for forensic analysis

• It also provides support for intrusion
prevention

• IDS evasion resistance mechanisms are
implemented too

38/269

Bro building blocks

• The Bro system is structured in layers
– Pre-processing and filtering
– Event engine
– Policy script interpreter

39/269

Bro building blocks

40/269

Bro building blocks

• The Pre-processing and filtering stage
– The lower-most layer
– Extracts data packets from the network
– For this purpose, the libpcap interface is usually

used, but there are other possibilities as well,
such as daq etc.

41/269

Bro building blocks

• The Event engine (1)
– Generates unbiased interpretation of purpose of

the processed packets in the form of special
notifications called events (1)
• The event module first performs integrity check of the

analyzed packet and if it fails, a special event indicating
a problem is generated and the packet is discarded

• If the integrity of the analyzed packet is in order, the
processing continues by detecting the transport
protocol used in the packet (e.g. TCP, UDP)

42/269

Bro building blocks

• The Event engine (2)
– Generates unbiased interpretation of purpose of

the processed packets in the form of special
notifications called events (2)
• Finally, for each supported protocol there is a

connection handler
– Verifies the integrity of the protocol implementation (by

means of a checksum) and interprets the purpose of traffic on
the semantic level

43/269

Bro building blocks

• The Event engine (3)
– What is monitored is not a single packet, but a

session
• Real in the TCP case
• Virtual in the UDP case

– UDP session is a set of contiguous packets sent from a
determined IP address to another determined IP address

– The processing of protocol-specific connection
handlers ends in invoking handlers to process the
payload data

44/269

Bro building blocks

• The Event engine (4)
– The event module generates policy-neutral events

interpreting the underlying network activity
– Examples of events

• Connection attempt
• HTTP reply
• User logged in
• Etc.

45/269

Bro building blocks

• The Event engine (5)
– The system recognizes more than 300 types of

events
– The complete list of events recognizable by Bro is

contained in the file event.bif.bro
– Demo: show the file event.bif.bro

 (location: /usr/local/bro/share/bro/base/event.bif.bro)

46/269

Bro building blocks

• The Policy script interpreter (1)
– Processes the stream of events generated in the

previous stage
– Context-aware

• Should reduce the number of false positives

– A particular policy, so-called site policy is enforced
in this module and notifications are generated if
the traffic does not conform to it

47/269

Bro building blocks

• The Policy script interpreter (2)
– Performs extensive logging, which serves in

forensic analysis
– Generates alerts via Syslog and sends commands

to other applications executed by Bro as a
response to suspicious traffic

48/269

Bro operation

• Pre-processing and filtering (1)
– Purpose

• Reduce the amount of data to be processed by the
subsequent stages to a minimum

– As we go higher up through the Bro layers, the
amount of data to be processed is reduced,
allowing for more intensive processing per data
item

49/269

Bro operation

• Pre-processing and filtering (2)
– The network is tapped in a passive way
– A copy of all network traffic is sent to the packet

capture interface - usually libpcap
• The advantage

– Compatibility with practically all the operating systems used
nowadays

– Compatibility with standard packet filtering mechanisms, such
as BPF (Berkeley Packet Filtering)

• The disadvantage
– Not very efficient

50/269

Bro operation

• Pre-processing and filtering (3)
– Filtering packets by means of these mechanisms

greatly reduces the amount of traffic processed by
the IDS from the very beginning
• Reduces the false negative rate

51/269

Bro operation

• Pre-processing and filtering (4)
– Bro pre-processing also includes data reduction

on the selected packets
• Only a portion of a packet is necessary to analyze in

order to determine the elements of a “session” needed
for the context aware intrusion detection

• The necessary length of a packet for this purpose is
called snapshot length

– In general much shorter than a typical length of a packet
(1500 bytes).

52/269

Bro operation

• Pre-processing and filtering (5)
– Example

• The default tcpdump snapshot length is 68 bytes
– Sufficient to capture link-layer and TCP/IP headers

– Reducing the snapshot length as much as possible
contributes to overall efficiency of the IDS and
reduces the number of false negatives

53/269

Bro operation

• Pre-processing and filtering (6)
– In Bro, a single packet is seldom enough for

quality estimation of the session properties
– In order to determine relevant information, the

pre-processing stage of Bro collects the control
data (SYN, FIN, RST etc.) in several packets

54/269

Bro operation

• Pre-processing and filtering (7)
– Based on these data, the parameters of the

session, which are typically the connection start
time, duration, participating hosts, ports, the
number of bytes sent in each direction, are
determined and recorded in a special data
structure for further processing in the subsequent
stages of Bro

55/269

Bro operation

• Event generation (1)
– Purpose

• Perform generic analysis of the connection packets

– Each intercepted packet is checked against the
connections established by the event module

– If such a connection does not exist, a new
connection is created, commencing with the
current packet

56/269

Bro operation

• Event generation (2)
– Each connection is associated an analyzer tree

• A data structure and a protocol detection mechanism
that activates specific analysis modules, called
analyzers for the connection traffic

• Dynamically adds and removes these analyzers
• At activation of each analyzer, all the traffic is assigned

to it, no matter how it was processed by the previous
analyzers

• If an analyzer determines that it has been invoked in
error, it is deactivated

57/269

Bro operation

• Event generation (3)
– Categories of Bro analyzers (1)

• Transport layer analyzers - ICMP, TCP, and UDP
• Application layer analyzers - BitTorrent, DCE RPC, DNS,

Finger, FTP, Gnutella, HTTP, Ident, IRC, Login, NCP,
NetbiosSSN, NFS, NTP, POP3, Portmapper, Rlogin, RPC,
Rsh, SMB, SMTP, SSH, and Telnet

58/269

Bro operation

• Event generation (4)
– Categories of Bro analyzers (2)

• Support analyzers - Contents, ContentLine, NVT, Zip,
Contents DNS, Contents NCP, Contents NetbiosSSN,
Contents Rlogin, Contents Rsh, Contents DCE RPC,
Contents SMB, Contents RPC, and Contents NFS

• Other analyzers - File, Backdoor, InterConn,
SteppingStone, TCPStats, and ConnSize

59/269

Bro operation

• Event generation (5)
– In addition to the manually written application-

layer analyzers, several automatically generated
application-layer analyzers exist in the event
generation module
• DHCP BINPAC, DNS TCP BINPAC, DNS UDP BINPAC, SSL,

HTTP BINPAC, and SYSLOG BINPAC

60/269

Bro operation

• Event generation (6)
– These analyzers were produced by means of a

special protocol parser that holds the same name
as the high-level language in which the protocols
are described in it - BINPAC

– It generates C++ code starting from the protocol
description in the BINPAC language

– Then this C++ code is integrated into the Bro
system

61/269

Bro operation

• Event generation (7)
– The most complex task of the Bro event

generation module is detection of the application
protocol

– In other network intrusion detection systems,
detection of application protocol is usually
performed in a static way

62/269

Bro operation

• Event generation (8)
– Example (1)

• In Snort, a static list of http ports used in protocol
detection is provided in the configuration file
snort.conf

• The problem with this approach is in the fact that
malicious packets tend not to use traditional ports for
their activities

• This forces the IDS designers to constantly expand the
static list of ports by adding ports on which they have
observed certain type of traffic

63/269

Bro operation

• Event generation (9)
– Example (2)

• Snort checks more than 40 ports for http traffic
• The consequence is reduced overall efficiency of the

IDS and the possibility of IDS evasion by using ports not
in the current list for delivering malicious traffic

• Demo: Display the contents of the file snort.conf
/etc/snort/snort.conf

64/269

Bro operation

• Event generation (10)
– In addition, it is possible to use non-standard

services on the ports traditionally dedicated to
certain services

– Example
• The use of IRC on a port traditionally used for http

traffic

65/269

Bro operation

• Event generation (11)
– The power of Bro lies in dynamic protocol

analysis, performed in the event generation
module

– Bro maintains a tree-like data structure called
data path for every session tracked

– The nature of this data structure is dynamic, i.e. it
may change during the analysis

66/269

Bro operation

• Event generation (12)
– The tree-like data structure represents the data

path through the analyzers
– Example – protocol analyzer tree in Bro

67/269

Bro operation

• Event generation (13)
– Initially, the analyzer tree of a new session

consists of the low-level protocol analyzers
– Example

• If the first packet of the session uses the TCP protocol,
the analyzer tree will initially consist of an IP analyzer
followed by a TCP analyzer

68/269

Bro operation

• Event generation (14)
– To recognize the higher level protocols, a set of

algorithms and heuristics is used
– They are implemented in a Protocol Identification

Analyzer (PIA)
– PIA is inserted into the analyzer tree after the TCP

or UDP analyzer

69/269

Bro operation

• Event generation (15)
– After detecting an application protocol, a PIA

instantiates a descendant analyzer for it and
forwards the data to that particular analyzer

– But the PIA is not dismissed after this action
• It continues applying its algorithms and heuristics on

the received traffic
• If it finds another match for a protocol, it instantiates

additional or alternative analyzers

70/269

Bro operation

• Event generation (16)
– During execution of the analyzers instantiated by

a PIA, it may happen that they are not capable of
determining the details of the protocols
corresponding to their output data

– In that case, they may decide to instantiate
another PIA in order to solve this problem

– Thus, an analyzer tree may contain more than one
PIA

71/269

Bro operation

• Event generation (17)
– Design of the event module (1)

• Basic design criteria (1)
– The need for different approaches in protocol detection

» The port number is obviously not enough and because of
that the use of signatures, heuristics and statistical
methods is also needed

– Flexible customization of the analyzers
» The configuration of the analyzers must conform to the

criteria that led to their activation (port numbers,
patterns for application-layer protocol detection, custom
decision functions, etc.)

72/269

Bro operation

• Event generation (18)
– Design of the event module (2)

• Basic design criteria (2)
– Dynamic activation/deactivation of the analyzers

» The analyzers might be activated at any time while the
connection is active

» If during the analysis it turns out that an analyzer was
invoked in error, it should be deactivated

73/269

Bro operation

• Event generation (19)
– Design of the event module (3)

• Basic design criteria (3)
– Performance requirements

» Since IDS must operate in high-speed networks in real
time, the performance of the analyzers must be as high
as possible

» It is, however, known that the cost of dynamic analysis of
protocols is higher than the cost of static analysis

» Because of that, it is required that static analysis remains
as a possibility, if performance of protocol analysis
becomes critical for the efficient operation of the IDS

74/269

Bro operation

• Event generation (20)
– Design of the event module (4)

• Basic design criteria (4)
– Possibility for multiple instances of analyzers

» The situation may dictate that multiple analyzers are
applied on the same data

– Capability of analyzing tunneled connections
» The dynamic analysis should be available for tunneling

protocols as well
» This may be achieved through allowing more PIAs in the

analyzer tree

75/269

Bro operation

• Event generation (21)
– Design of the event module (5)

• Basic design criteria (5)
– The need for standardized interfaces for the analyzers

» It is necessary to connect different analyzers in a serial
manner, according to the protocol stack (for example, IP-
TCP-application)

» Each analyzer then processes input provided from the
previous analyzer and produces output that is going to be
utilized by the next analyzer in the row

» Because of that, the design of common interfaces is very
important for efficient operation of an analyzer tree

76/269

Bro operation

• Event generation (22)
– Design of the event module (6)

• Basic design criteria (6)
– The need for extension of the analyzers

» Some modules and/or built-in functions could be used by
various analyzers in order to carry out common tasks

77/269

Bro operation

• Event generation (23)
– Design of the event module (7)

• Techniques for identifying protocols (1)
– Behavioral analysis

» A form of statistical identification
» Such an analysis is based on probability study that creates

a protocol profile that includes probabilities that certain
users, ports or servers will be included in the protocol
data

» Various machine learning techniques can also be used for
this purpose

78/269

Bro operation

• Event generation (24)
– Design of the event module (8)

• Techniques for identifying protocols (2)
– Protocol structure based detection

» Based on a careful study of the header and data structure
of the currently analyzed protocol in order to conclude
about what the next protocol in the protocol stack will be

79/269

Bro operation

• Event generation (25)
– Design of the event module (9)

• Techniques for identifying protocols (3)
– Signature-based detection

» The most often used technique, since the misuse
detection systems already implement various signature
matching techniques

» In such a system, all the supported protocols are defined
through a set of patterns that identify them

» These patterns are then matched against every
connection

80/269

Bro operation

• Event generation (26)
– Design of the event module (10)

• Techniques for identifying protocols (4)
– A combination of these techniques is also possible
– Example

» It is possible to use statistical methods to identify some
application protocols and signatures to identify others

81/269

Bro operation

• Event generation (27)
– Design of the event module (11)

• In most cases, it is necessary to buffer data from the
incoming packets in order to perform reassembly later
(for example, HTTP reassembly)

• This is implemented in PIA
– Buffers the beginning of each session up to a configurable

threshold (by default 4 KB)
– The buffering ensures that the protocol analyzer activated by

PIA starts the analysis from the beginning of the session,
provided a buffer overflow does not take place

82/269

Bro operation

• Event generation (28)
– Design of the event module (12)

• If a PIA decides that an analyzer was invoked in error
and that it should start a new one, the buffering
mechanism ensures that the whole session will be
available to the new analyzer, even though the new
analyzer is started in the middle of the session

83/269

Bro operation

• Event generation (29)
– PIA structure and operation (1)

• A PIA can be viewed and analyzed as a finite state
machine

• Possible states of a PIA
– The INIT state
– The SIG state
– The ANALYZER state
– The ONLY MATCH state
– The DELIVER state

84/269

Bro operation

• Event generation (30)
– PIA structure and operation (2)

• Transitional events in a PIA
– No Reassembly
– Start Reassembly
– Buffer Overflow
– Protocol Detected

85/269

Bro operation

• Event generation (31)
– PIA structure and operation (3)

86/269

Bro operation

• Event generation (32)
– PIA structure and operation (4)

• The INIT state (1)
– The state of a PIA when it is instantiated
– In the INIT state, the PIA retrieves the data from the current

analyzer tree about the session (for example, the destination
port)

– The initial configuration of analyzers is decided in that state
– Then the PIA decides whether there is a need for session

reassembly or not
– If there are active analyzers for the particular session, then it

must be reassembled
87/269

Bro operation

• Event generation (33)
– PIA structure and operation (5)

• The INIT state (2)
– The initial configuration of Bro determines for which ports the

sessions will always be reassembled, even if there are no
active analyzers expecting the session data

– It is also possible to configure Bro to reassemble all sessions
– If session reassembly is not needed, the PIA finite state

machine makes a transition to the SIG state
– Otherwise, the PIA makes a transition to the ANALYZER state
– Session reassemblers are implemented in Bro as separate

auxiliary analyzers
88/269

Bro operation

• Event generation (34)
– PIA structure and operation (6)

• The SIG state (1)
– In the SIG state, the PIA tries to match the session data with

protocols, for which it has signatures defined
– The session is not reassembled and consequently no analyzers

are activated until a match with a signature is found
– Buffering of the session data takes place, however (up to 4 KB

of data, by default)

89/269

Bro operation

• Event generation (35)
– PIA structure and operation (7)

• The SIG state (2)
– If no signatures are matched in the SIG state, the buffer is

filled until the Buffer Overflow event occurs
– Then the PIA makes a transition to the ONLY MATCH state
– Otherwise, if a signature match is detected (the event

Protocol Detected takes place), the PIA makes a transition to
the ANALYZER state

90/269

Bro operation

• Event generation (36)
– PIA structure and operation (8)

• The ANALYZER state (1)
– In the ANALYZER state, the PIA expects reassembled

application data
– The activities of the PIA in this state are matching, buffering,

delivering and check for buffer overflow

91/269

Bro operation

• Event generation (37)
– PIA structure and operation (9)

• The ANALYZER state (2)
– Matching checks, by means of the built-in pattern matching

module, whether a pattern identifying another protocol is
found in the reassembled data

– If so, the corresponding analyzer is instantiated and the data
from the buffer accumulated during the analysis is replayed to
the new analyzer

– This is so-called matching with a positive pattern

92/269

Bro operation

• Event generation (38)
– PIA structure and operation (10)

• The ANALYZER state (3)
– Bro also performs matching with negative patterns in this

state
» On such a match, the corresponding analyzer is shut

down, which means that the analysis performed by the
PIA concludes that the supposition about the protocol by
which it came to the ANALYZER state was wrong and
should be changed

93/269

Bro operation

• Event generation (39)
– PIA structure and operation (11)

• The ANALYZER state (4)
– The buffering activity collects data, their size and direction in

a special data structure
– Its size is limited to 4 KB by default, but this value can be

overridden
– If the size of all objects in the buffer overcomes the limit, a

Buffer Overflow event takes place
– Otherwise, the data are delivered to all the existing

successors of the PIA by means of the delivering activity

94/269

Bro operation

• Event generation (40)
– PIA structure and operation (12)

• The ONLY MATCH state
– If the PIA in the SIG state fails to find a match for any protocol

known by Bro before the Buffer Overflow takes place, the PIA
makes a transition to the ONLY MATCH state

– In this state, the non-reassembled data are immediately
matched (i.e. without buffering) against protocol signatures

– A match with a negative pattern stops the corresponding
analyzer

– The ONLY MATCH state of the PIA is final - The PIA remains in
that state until the end of the session

95/269

Bro operation

• Event generation (41)
– PIA structure and operation (13)

• The DELIVER state
– A Buffer Overflow event in the ANALYZER state triggers a

transition of the PIA finite state machine to another final
state, the DELIVER state

– The incoming data are only matched and delivered to
succeeding analyzers

– A match with a negative pattern also causes shutting down of
the corresponding analyzer

96/269

Bro operation

• Event generation (42)
– Analyzer structure and operation (1)

• For each protocol recognizable by Bro there is a
separate analyzer

– Checks whether the traffic conforms to a particular protocol

• The input format varies for different analyzers
– Depends on whether the protocol operates with segments or

packets, whether reassembly takes place or not etc.

• Because of that, all analyzers in Bro are capable of
receiving and outputting packet/segment and stream
(reassembled) information

97/269

Bro operation

• Event generation (43)
– Analyzer structure and operation (2)

• Example
– A TCP analyzer requires reassembled information, i.e. stream

input
– An IP analyzer requires segment input

98/269

Bro operation

• Event generation (44)
– Analyzer structure and operation (3)

• The analyzers also have to be capable of pre-formatting
or normalizing their input

• Example
– The analyzers such as Telnet, HTTP, FTP, or SMTP need

stream-to-line conversion of input data, i.e. the input stream
has to be split into lines

– For such a conversion, an auxiliary analyzer is used

99/269

Bro operation

• Event generation (45)
– Analyzer structure and operation (4)

• The analyzers are serially coupled
– This means that the information from an auxiliary analyzer is

passed to the next auxiliary analyzer in the series until the
correct formatting is achieved

– Then the formatted information is sent back to the starting
analyzer, which is now capable of performing the analysis

100/269

Bro operation

• Event generation (46)
– Analyzer structure and operation (5)

• Each analyzer in Bro is capable of detecting the
situation where the analyzed traffic does not conform
to the respective protocol

• In that case, the analyzer replies to the caller with the
signal NACK, causing the previous analyzer to shut it
down

101/269

Bro operation

• Event generation (47)
– Analyzer structure and operation (6)

102/269

Bro operation

• Event generation (48)
– Analyzer structure and operation (7)

• Each analyzer has two inputs
– Enables seamless processing of both packet/segment and

stream (already reassembled) data

• If any of the auxiliary analyzers are to be used, the
built-in switch dispatches the input data to those
analyzers

• Otherwise, the data are sent directly to the protocol
analysis module

103/269

Bro operation

• Event generation (49)
– Analyzer structure and operation (8)

• If some auxiliary analyzers are to be employed, upon
serial processing by those analyzers, the data
(eventually pre-formatted or changed in some other
way in order to be processed properly) are sent to the
protocol analysis module

104/269

Bro operation

• Event generation (50)
– Analyzer structure and operation (9)

• If any irregularities are detected in the protocol
analysis module, a notification is generated and sent to
the alert subsystem

– There, depending on the severity of such an irregularity and
the current site security policy, a message could be sent to
the operator

– Such a message in the Bro terminology is called a notice

105/269

Bro operation

• Event generation (51)
– Analyzer structure and operation (10)

• If there are no irregularities in the input data, the
protocol analysis module forwards the data to the next
analyzer in the row

• As with the input data, the output data are also sent in
the packet/segment or stream format

106/269

Bro operation

• Event generation (52)
– Solving problems in event generation (1)

• To ensure efficient operation of the Bro event module,
it is necessary to minimize the numbers of false
negatives and false positives in protocol recognition

• Since protocol detection and verification are two
phases of this process, each of these phases has to be
configured properly

107/269

Bro operation

• Event generation (53)
– Solving problems in event generation (2)

• The detection phase accuracy and efficiency are
determined by the choice of appropriate protocol
signatures used to detect potential application-layer
protocols in input data

• In this phase, it is allowed to have less precise
signatures

– Reduces the number of false negatives
– The inevitable increase in the number of false positives is

compensated by activating the second phase - protocol
verification in the analyzers

108/269

Bro operation

• Event generation (54)
– Solving problems in event generation (3)

• A two-phase protocol recognition mechanism is
resource intensive

– May have negative effect on overall efficiency of the Bro IDS if
the second phase of the recognition algorithm - the
verification phase in the analyzers - is used too extensively

• In addition, an attacker may exploit this two-phase
procedure and craft traffic that deliberately forces
intensive use of the analyzer verification

109/269

Bro operation

• Event generation (55)
– Solving problems in event generation (4)

• To achieve balance in the use of the two phases of the
protocol recognition process, Bro uses bidirectional
signatures for protocol detection (the first phase)

• This means that a match means that both endpoints of
a session are supposed to use the same protocol

110/269

Bro operation

• Event generation (56)
– Solving problems in event generation (5)

• Then an attacker that controls one side of the session
cannot force Bro event module to activate the
corresponding analyzer and thus increase resource
consumption of Bro

• In addition, before activating the second phase, Bro
parses the beginning of the contents of the traffic in
both directions

– The corresponding analyzer is activated only if this parsing
process detects meaningful information exchange between
the session endpoints

111/269

Bro operation

• Event generation (57)
– Solving problems in event generation (6)

• Event generation timing is also one of the important
parameters of Bro quality

• If use of certain applications (and consequently of the
corresponding protocols) violates the site security
policy, it should be reported before the application in
question causes any harm

112/269

Bro operation

• Event generation (58)
– Solving problems in event generation (7)

• The first phase of the application protocol detection
procedure, the signature matching, is completed
quickly

• However, to be certain about the verification, the
second phase is needed, in which one should wait until
the session ends

113/269

Bro operation

• Event generation (59)
– Solving problems in event generation (8)

• Waiting until the end of session is unacceptable, since
during the very session the malicious activity intended
by the use of the forbidden application protocol could
be carried out

• Because of that, any analyzer in Bro supposes that if
the beginning of the session uses an application
protocol, the rest of the session also uses the same
protocol

114/269

Bro operation

• Event generation (60)
– Solving problems in event generation (9)

• Bro uses two thresholds
– The exchange of the given volume of initial information

between the session endpoints
– The amount of time that is used for the session beginning

• Both thresholds are configurable
• It is evident that such kind of Bro operation is

vulnerable to attacks that would exploit the values of
those thresholds, but that is the price that we must pay
for alerting on time when an attack occurs

115/269

Bro operation

• Event generation (61)
– Solving problems in event generation (10)

• An analyzer may detect that it has been invoked in
error, i.e. that the protocol used does not conform to
the analyzer invoked

• Since this may be a result of a random communication
error, it is not a good idea to shut down the analyzer
immediately

• On the other hand, waiting for too long for the
resynchronization of the session may lead to waisting
of resources

116/269

Bro operation

• Event generation (62)
– Solving problems in event generation (11)

• The solution
– The sessions in Bro are rejected if they violate a set of basic

protocol properties

• But in that case, an attacker could exploit this fact and
generate traffic that does not violate the set of
protocol specifications analyzed by Bro, but still be
illegal

117/269

Bro operation

• Event generation (63)
– Solving problems in event generation (12)

• To reduce the chance of success of such an attack, an
analyzer in Bro never shuts down itself automatically

• Instead, in the case of severe protocol violations, Bro
generates an event that is to be processed by the policy
script interpreter

• It is then up to the user to say what is to be done with
such traffic

118/269

Policy script interpreting

• The main characteristic of Bro
– Separation of its surveillance mechanism

implemented in the pre-processing and event
generation stages from a site policy for processing
the generated events

• The site-specific security policy defines the
interpretation of these events, labeling them
as normal, abnormal, suspicious and so on

119/269

Policy script interpreting

• Once an event is triggered in the event
generation stage, it is passed to the policy
layer that processes these events

• The policy layer defines the policy
configuration that embodies the site security
policy
– Realized through scripts written in the specific Bro

scripting language

120/269

Policy script interpreting

• The relevance of an event varies depending
on the site (or context)
– Using a site specific policy offers a possibility of

reflecting this relevance in the corresponding
scripts

– Reduces the number of false positives

• The scripts realize event handlers
– Process the generated events according to the site

specific security policy
121/269

Policy script interpreting

• There is a default set of scripts that are loaded
when Bro starts

• These scripts can
– Report events related with use of various

protocols (e.g. http, ssh, ssl, irc, ftp and so on)
– Report use of software embedded in connections

• Example - use of Nmap port scanning tool embedded in
HTTP requests, etc.

122/269

Policy script interpreting

• In addition to loading the default scripts,
there are many ready-made scripts that can
be loaded upon request

• It is also possible to run Bro without using the
default scripts
– Then the user has full control over behavior of the

system
– He can load only the scripts necessary for

detection of suspicious traffic at hand
123/269

Policy script interpreting

• The Bro script set structure (1)
– The Bro script set that defines its functionality is

divided into three categories: Base, Policy and Site
– Each of these categories contains a corresponding

set of scripts that can be loaded when Bro starts
– Physically, the scripts are located in the separate

directories, whose names are the same as the
names of the categories

124/269

Policy script interpreting

• The Bro script set structure (2)
– Demo: Display the contents of the directory

/usr/local/bro/share/bro

125/269

Policy script interpreting

• The Bro script set structure (3)
– The Base category scripts are loaded by default

when Bro starts
• These scripts define essential functionality of Bro,

which includes the Bro built-in function that defines
events (event.bif.bro), some data types, utility
functions as well as basic frameworks (e.g. notice) and
events related with the supported protocols (http, ftp,
irc, smtp, ssh, ssl, syslog, etc.)

• Demo: Display the contents of the directory
/usr/local/bro/share/bro/base

126/269

Policy script interpreting

• The Bro script set structure (4)
– The Policy category scripts are not completely

loaded at the start-up time
• In general, users have to define whether they want to

use some of them
• These scripts include those that perform a deeper

inspection of packets that convey specific protocol
traffic, as well as more frameworks

• Demo: Display the contents of the directory
/usr/local/bro/share/bro/policy

127/269

Policy script interpreting

• The Bro script set structure (5)
– The Site category defines the local security policy

• In the script local.bro, this policy is defined by
specifying the scripts from other categories that are to
be loaded at the start-up time

• Users can edit this script according to their needs
• In addition, they can write their own scripts thus

effectively defining the site security policy
• In such a way, the user can precisely define what is

considered an attack on the particular network

128/269

Policy script interpreting

• The Bro script set structure (6)
– Demo

• Display the contents of the directory
/usr/local/bro/share/bro/site

• Display the file local.bro

129/269

Policy script interpreting

• The Bro script set structure (7)
– The contents of each script loaded in Bro defines

what action is to be performed related to an
event discovered by the Event module

– Most often these scripts analyze the events
thoroughly, by extracting the necessary
information
• This information can then be used by other scripts,

typically by those that raise the alerts

130/269

Policy script interpreting

• The Bro script set structure (8)
• Bro activates some of the alert-raising scripts

at the start-up time by default
– Most of such scripts belong to the Site category,

which means that they are user-defined

131/269

Policy script interpreting

• The Bro script set structure (9)
– The Base script set

• The Base script set consists of four subsets:
Frameworks, Misc, Protocols, and Utils

• In addition, this set contains a set of built-in functions
(bif) that provide support to the system by
implementing general programming algorithms, string
processing, mathematical functions, type declarations,
etc.

132/269

Policy script interpreting

• The Bro script set structure (10)
– The Framework script subset

• The Framework script subset consists of the following
script groups (frameworks): Cluster, Communication,
Control, DPD, Intel, Logging, Metrics, Notice, Packet
filter, Reporter, Signatures, Software, etc.

• Demo: Display the contents of the directory
/usr/local/bro/share/bro/base/frameworks

• Each group contains a script named main.bro
– This script is sometimes accompanied with additional auxiliary

scripts

133/269

Policy script interpreting

• The Bro script set structure (11)
– Cluster

• The Bro network security monitor is capable of using
several Bro sensors combined in a distributed
architecture, which is called cluster in Bro terminology

• The Cluster script group provides support for
establishing and controlling a cluster of Bro instances

134/269

Policy script interpreting

• The Bro script set structure (12)
– Communication (1)

• Provides support for communication between several
instances of Bro, as well as communication between
various tools written in the C programming language
and Bro

• The different instances of Bro can share their states
and transfer events between them

135/269

Policy script interpreting

• The Bro script set structure (13)
– Communication (2)

• Communication between C tools and Bro is carried out
by means of a special library Bro Client
Communications Library – Broccoli

– Can be used for transfer of data to and from Bro
» Example - SYSLOG events can be fed into Bro by means of

Broccoli

136/269

Policy script interpreting

• The Bro script set structure (14)
– Control

• Provides support for commands that can be sent
remotely at runtime to modify a running Bro instance
or collect information from a running Bro instance

• The following commands are supported: id_value,
peer_status, net_stats, configuration_update, and
shutdown

137/269

Policy script interpreting

• The Bro script set structure (15)
– DPD (1)

• The Dynamic Protocol Detection - DPD framework
represents support to the protocol detection algorithm
that does not use port numbers

• The main script in this group is capable of disabling the
analyzers in the event module if protocol violations
occur

• The main script is supported with a set of protocol
recognition signatures contained in the file dpd.sig

138/269

Policy script interpreting

• The Bro script set structure (16)
– DPD (2)

• Demo: Display the file dpd.sig
 (location:

/usr/local/bro/share/bro/base/frameworks/dpd/dpd.sig)

139/269

Policy script interpreting

• The Bro script set structure (17)
– DPD (3)

• Example (1)
 signature dpd_http_client {
 ip-proto == tcp
 payload /ˆ[[:space:]]*(GET|HEAD|POST)[[:space:]]*/
 tcp-state originator
 }

140/269

Policy script interpreting

• The Bro script set structure (18)
– DPD (4)

• Example (2)
 signature dpd_http_server {
 ip-proto == tcp
 payload /ˆHTTP\/[0-9]/
 tcp-state responder
 requires-reverse-signature dpd_http_client
 enable "http"
 }

141/269

Policy script interpreting

• The Bro script set structure (19)
– DPD (5)

• Example (3)
– This signature defines an HTTP client and an HTTP server
– The HTTP server requires an HTTP client in order for that

signature to be matched
– The protocol is recognized by recognizing some elements in

the payloads of the packets
– These elements are given in the regular expression form
– The keyword enable activates the corresponding analyzer in

the event module

142/269

Policy script interpreting

• The Bro script set structure (20)
– Intel

• Provides support for storing and querying IP addresses,
string and numerical data

• Also capable of associating metadata (such as tags)
with the intelligence data

• Examples of strings recognized in IP addresses and
associated data are url, user name, file name, etc.

• The tags that can be associated to these data are
malicious, sensitive, etc.

143/269

Policy script interpreting

• The Bro script set structure (21)
– Logging

• Provides the logging interface for Bro
• Defines logging filters, local and remote logging, default

logging device, the contents of the logging stream and
so on

• Also provides support for making secure copies of log
streams and secure transfer of logs

144/269

Policy script interpreting

• The Bro script set structure (22)
– Metrics

• Provides support for counting and measuring data
• Closely related to the Notice script group, since many

notices (the messages to the operator in Bro) are based
on some counters overcoming some thresholds

145/269

Policy script interpreting

• The Bro script set structure (23)
– Notice (1)

• The Notice framework enables Bro to send notices
– Messages to the operator about odd or potentially malicious

traffic

• Defines logging streams for notices
– The primary logging stream is LOG, but the notices are very

often escalated to alerts and because of that the ALARM_LOG
is also present as a logging stream

• There is also a policy auditing log POLICY_LOG
– Records what the current notice policy is at Bro initialization

time
146/269

Policy script interpreting

• The Bro script set structure (24)
– Notice (2)

• The Notice framework also defines actions to be
undertaken upon generating notices (ACTION_NONE,
ACTION_LOG, ACTION_EMAIL, ACTION_ALARM,
ACTION_NO_SUPRESS (i.e. keep generating repeated
notices about the same event))

• It counts the number of notices and defines the report
fields in the records of the notice log

• It also defines which notice types are to be ignored,
sent by E-mail, alarmed etc.

147/269

Policy script interpreting

• The Bro script set structure (25)
– Notice (3)

• In addition, this framework defines which elements
constitute the notice policy

• Priorities of the notices are defined as well as many
other details related to sending notices

• Several supporting scripts are also present, besides the
main script

– They define the Notice framework in the cluster environment,
post-processing of notices, actions related to non-standard
(weird) traffic etc.

148/269

Policy script interpreting

• The Bro script set structure (26)
– Notice (4)

• Demo: Display the file main.bro in the notice
framework

 (location:
/usr/local/bro/share/bro/base/frameworks/notice/main.bro)

149/269

Policy script interpreting

• The Bro script set structure (27)
– Packet filter (1)

• This framework defines settings for the Berkeley Packet
Filter (BPF) used by Bro

• The default is that no traffic is filtered out
• This default filter can be overridden by the command

line and the capture_filters and restrict_filters variables
• The command line filter takes precedence over all the

other filters

150/269

Policy script interpreting

• The Bro script set structure (28)
– Packet filter (2)

• The packet filter used in Bro is particularly useful if
packet drop takes place

• The number of dropped packets is reported by means
of the script netstats.bro

151/269

Policy script interpreting

• The Bro script set structure (29)
– Reporter (1)

• Provides support for filtering internal messages,
warnings and errors in Bro

• Its role is to prevent that internal messages end up in
standard reporting channels and thus confuse the
operator

• Internal messages are instead logged in a separate log
file reporter.log

• These messages are very useful at new script debug
time

152/269

Policy script interpreting

• The Bro script set structure (30)
– Reporter (2)

• There are three types of messages: INFO, WARNING,
and ERROR

• An error message is not a fatal error, i.e. it does not
terminate Bro execution

153/269

Policy script interpreting

• The Bro script set structure (31)
– Signatures

• Bro also supports classical misuse-based intrusion
detection, through its own signature framework

• The Signatures framework in the Base script set
provides support for this type of intrusion detection

• It defines types of signatures, actions associated with
signatures, report fields written in the corresponding
log, etc.

154/269

Policy script interpreting

• The Bro script set structure (32)
– Software

• Provides support for software version detection and
parsing

• However, it does not detect software by itself
• Instead, it uses information provided by protocol-

specific scripts
• The framework records the version number of the

discovered software, defines the report fields for the
corresponding log file and so on

155/269

Policy script interpreting

• The Bro script set structure (33)
– The Misc script subset

• This script subset currently contains fingerprints of
various operating systems that serve for identifying
them on the basis of the incoming SYN packets

– Window size, initial TTL, status of the don’t fragment bit, SYN
packet size, etc. serve for this purpose

156/269

Policy script interpreting

• The Bro script set structure (34)
– The Protocols script subset

• Provides support for detecting events related with
various application protocols

• Currently, the support is provided for the following
protocols: DNS, FTP, HTTP, IRC, SMTP, SSH, SSL,
SYSLOG, etc.

• In addition, there is a special script group CONN that
extracts relevant information about tcp and udp
sessions, as well as icmp type and code information

157/269

Policy script interpreting

• The Bro script set structure (35)
– CONN (1)

• Provides support for tracking and logging of general
information related with TCP, UDP, and ICMP traffic

• A connection with TCP or UDP is considered a sequence
of packets exchanged between a determined source
host/port and a destination host/port

• Regarding ICMP traffic, the type and code fields are
extracted from ICMP packets

158/269

Policy script interpreting

• The Bro script set structure (36)
– CONN (2)

• The contents of the packets can be extracted too, by
means of the script contents.bro, but this is not done
by default

• Special processing is provided for traffic with long
delays between packets by means of the script
inactivity.bro

159/269

Policy script interpreting

• The Bro script set structure (37)
– DNS

• Tracks and logs DNS queries and responses
• Report fields are defined for logging, the status of DNS

queries, ports related with the DNS protocol and so on
• The types, errors and fields for analysis of DNS data are

provided in a separate script consts.bro

160/269

Policy script interpreting

• The Bro script set structure (38)
– FTP

• Provides support for logging FTP commands together
with the corresponding metadata

• Defines the report fields for logging
• Defines FTP-related ports
• Also defines the FTP commands and provides functions

for extracting information from them
• File extraction support is provided by means of a

separate script file-extract.bro

161/269

Policy script interpreting

• The Bro script set structure (39)
– HTTP (1)

• Provides support for HTTP protocol analysis in Bro
• Logs request/response pairs and the relevant metadata
• It is possible to define types of attacks on HTTP that are

to be logged
• The record fields for logging are defined, as well as

possible states of an HTTP connection, HTTP headers,
the HTTP-related ports with distinguished likely-server
ports, etc.

162/269

Policy script interpreting

• The Bro script set structure (40)
– HTTP (2)

• The functions that carry out HTTP data extraction are
also provided

• In addition to the main.bro script that performs basic
analysis, several auxiliary scripts provide support for
per-file extracting items from HTTP traffic, calculating
hash values for HTTP body transfers and identifying file
types in HTTP response bodies

163/269

Policy script interpreting

• The Bro script set structure (41)
– HTTP (3)

• Signatures for identifying application types are given in
the file file-ident.sig

• Various utilities used in the scripts are provided in a
special script utils.bro

• Demo: Display the contents of the file main.bro
– (location:

/usr/local/bro/share/bro/base/protocols/http/main.bro)

164/269

Policy script interpreting

• The Bro script set structure (42)
– IRC

• Provides the IRC analysis support
• IRC commands together with the associated responses

and additional metadata about the connection are
logged

• The report fields for logging are defined, as well as the
IRC-related ports

• The functions to extract data are also provided
• Functionality to analyze Direct Client Connection (DCC)

file transfers is provided in the script dcc-send.bro
165/269

Policy script interpreting

• The Bro script set structure (43)
– SMTP

• Provides support for analysis of E-mail traffic that uses
the SMTP protocol

• Report fields for logging are defined, as well as the
possible states of a connection

• The SMTP-related ports are also defined
• The functions that carry out information extraction are

provided
• Analysis and logging of MIME entities is performed by

means of a separate script entities.bro
166/269

Policy script interpreting

• The Bro script set structure (44)
– SSH (1)

• Provides a heuristic to determine whether an SSH
connection was successful or not

• The heuristic uses the size of data returned from the
server as an indicator

• The report fields for logging are also defined in this
script

167/269

Policy script interpreting

• The Bro script set structure (45)
– SSH (2)

• The threshold for the returned data size is set to 5500
bytes by default

• If the data size overcomes this threshold the SSH
connection is considered successful

• The SSH-related ports are defined and the functions to
extract data are provided

168/269

Policy script interpreting

• The Bro script set structure (46)
– SSL (1)

• Provides support for analysis of the SSL/TLS
handshaking and the establishment of the enciphered
connection

• Defines the report fields for logging
• Defines the root Certification Authority (CA) and the

SSL-related ports
• Also provides the functions that extract data

169/269

Policy script interpreting

• The Bro script set structure (47)
– SSL (2)

• There is a special function that de-activates the SSL
analysis after the SSL connection is established

– This function increases performance of further analysis, since
the resources used for SSL connection establishment analysis
are freed by means of it

• A list of root CA is provided in the file mozilla-ca-list.bro
• The numerical and string code constants necessary for

SSL connection establishment analysis are provided in
the script consts.bro

170/269

Policy script interpreting

• The Bro script set structure (48)
– SYSLOG

• Provides support for logging SYSLOG messages in Bro
• The report fields for logging are provided as well as the

SYSLOG-related ports
• Every SYSLOG message is analyzed as an event, for

which various parameters are defined in the script
main.bro

• The numerical and string constants necessary for
SYSLOG data extraction are given in the file consts.bro

171/269

Policy script interpreting

• The Bro script set structure (49)
– The Utils script subset (1)

• Implements algorithms that other scripts need to
realize their tasks

• The implemented functions (1)
– Parse and manipulate IP addresses
– Generate ASCII strings from connection identifiers
– Determine whether a connection is unidirectional or

bidirectional, inbound or outbound
– Generate various file names
– Extract integers from strings

172/269

Policy script interpreting

• The Bro script set structure (50)
– The Utils script subset (2)

• The implemented functions (2)
– Parse and manipulate UNIX-style paths and directories
– Create and manipulate patterns (regular expressions)
– Perform small string analysis, etc.

• In addition, in the file site.bro, it is defined which
networks are local and what servers run particular
services

173/269

Policy script interpreting

• The Bro script set structure (51)
– The Policy script set

• The Policy script set consists of five subsets:
Frameworks, Integration, Misc, Protocols, and Tuning

• All these subsets contain auxiliary scripts that are not
necessarily loaded to Bro by default

• The operator can include them by specifying their
names in the Site policy file load.bro

174/269

Policy script interpreting

• The Bro script set structure (52)
– The Framework script subset

• Consists of the following script groups (frameworks):
Communication, Control, DPD, Metrics, Signatures, and
Software

• The Policy framework script groups do not contain
scripts named main.bro

175/269

Policy script interpreting

• The Bro script set structure (53)
– Communication

• Facilitates communication between various Bro
instances

• Implements a listener, a script that enables Bro to wait
other Bro instances to connect to it.

176/269

Policy script interpreting

• The Bro script set structure (54)
– Control

• The scripts controller.bro and controllee.bro constitute
this script group

• The script controller.bro implements the interface
intended to control a remote Bro instance and then
shut it down

• The script controllee.bro is loaded by the Bro process
that is planned to receive control commands from
another Bro process

177/269

Policy script interpreting

• The Bro script set structure (55)
– DPD (1)

• Consists of the scripts detect-protocols.bro and
packet-segment-logging.bro

• The script detect-protocols.bro finds protocols that run
on non-standard ports

• It first defines a list of ports on which detection of a
new protocol in the specified direction is irrelevant

178/269

Policy script interpreting

• The Bro script set structure (56)
– DPD (2)

• Example - if HTTP outgoing traffic is detected on the
port 81, it is considered benign

• All other traffic detected on that port will be
considered suspicious and a notice will be raised

• The notices can be Protocol_Found or Server_Found

179/269

Policy script interpreting

• The Bro script set structure (57)
– DPD (3)

• A connection is considered to use a protocol X if it is
still active after minimum 30 sec, or if the minimum
traffic volume transferred is 4 Kbytes, or if it is used by
the end of the connection

• The script packet-segment-logging.bro enables logging
of packet data in spite of protocol parsing violation
being detected

• These data can then be used by other analyzers
invoked by the Event module

180/269

Policy script interpreting

• The Bro script set structure (58)
– Metrics

• Contains scripts that make various statistics about
connections in general, HTTP requests and responses,
and SSL connections

• These scripts should be considered examples and as
such they should be further developed in order to be
used in practice

181/269

Policy script interpreting

• The Bro script set structure (59)
– Signatures

• This framework is currently capable of detecting so-
called reverse shells

– Attacks attempting to execute system commands on the
compromised host

182/269

Policy script interpreting

• The Bro script set structure (60)
– Software

• Provides support for defining vulnerable versions of
software

• A notice will be generated if such a version (or an older
one) is detected

• In addition, these scripts are capable of defining
software names for which it is possible to track version
changes

• In such a case, a notice is generated if the software
version changes on a specified host

183/269

Policy script interpreting

• The Bro script set structure (61)
– The Integration script subset

• Provides support for gathering information about
attacks from various systems

• Currently, it supports Snort alert integration into Bro
• To this end, the support for Barnyard2 is provided
• This enables aggregation of data from Snort and Bro in

a database

184/269

Policy script interpreting

• The Bro script set structure (62)
– The Misc script subset

• Contains miscellaneous scripts, for example a script
that turns on profiling of Bro resource consumption,
memory and packet statistics, manages trace files, etc.

• A script that detects port scans is often included in this
category

185/269

Policy script interpreting

• The Bro script set structure (63)
– The Protocols script subset

• Provides additional support for detecting events
related with various protocols

• Currently, additional support is provided for the
following protocols: DNS, FTP, HTTP, SMTP, SSH, and
SSL

• In addition, there is a special script set CONN that
extracts relevant information about hosts and services
known to the defended network, as well as information
about weird traffic

186/269

Policy script interpreting

• The Bro script set structure (64)
– CONN

• Provides support for logging information about hosts
that have performed complete TCP handshakes during
the day, as well as information about services used in
the defended network

• In addition, classification of so-called weird events is
possible in order to further analyze these events

187/269

Policy script interpreting

• The Bro script set structure (65)
– DNS

• Contains scripts capable of analyzing situations in
which external names resolve to addresses within the
defended network

• Also defines additional responses to a query to the DNS
log

188/269

Policy script interpreting

• The Bro script set structure (66)
– FTP

• Provides support for detecting potentially malicious
activities related with the FTP protocol

• Also capable of detecting client and server software
used with the FTP protocol

189/269

Policy script interpreting

• The Bro script set structure (67)
– HTTP

• Provides additional support for detection of software
and Web applications used with the HTTP protocol,
browser plugins, extraction of cookies, uri identifiers
and header names

• Also capable of detecting malware with known hash
values as well as SQL injection attacks

190/269

Policy script interpreting

• The Bro script set structure (68)
– SMTP

• Provides support for detecting blocked senders and
recipients, suspicious places of origin and E-mail
related software, for example E-mail client software
and Web mail software

191/269

Policy script interpreting

• The Bro script set structure (69)
– SSH

• Provides heuristics to determine whether the brute
force password guessing attack has taken place

• Also capable of detecting software used as client and
server for SSH, as well as SSH connections originating
from suspicious hosts

192/269

Policy script interpreting

• The Bro script set structure (70)
– SSL

• Provides support for certificate extraction, validation
and logging

• Logs expired certificates
• Also contains an auxiliary script that performs

computation of MD5 hash values for certificates

193/269

Policy script interpreting

• The Bro script set structure (71)
– The Tuning script subset

• Contains various scripts that have influence on the
amount of resources used by Bro

• Contains a script that defines which elements of the
defended network will be tracked by Bro

– By default, hosts, services and certificates will be tracked

• Also contains a script that captures TCP fragments
• Another script issues a warning if Bro is not configured

properly, for example if so-called local network is not
defined

194/269

Policy script interpreting

• The Bro script set structure (72)
– The Site script set (1)

• Contains a script named local.bro
– Defines the local site policy
– The operator is supposed to edit this script as appropriate
– Defines logging of loaded scripts at the execution time, Bro

tuning settings, local networks, policy related with software
detected by Bro, the protocols from the Policy subset that will
be loaded, etc.

• The Site script group also defines local details of Bro
cluster, if it is used

195/269

Policy script interpreting

• The Bro script set structure (73)
– The Site script set (2)

• Demo: Display the contents of the file local.bro
 (location: /usr/local/bro/share/bro/site/local.bro)

196/269

Policy script interpreting

• Messages to the operator (1)
– Bro produces a lot of information about the

analyzed network
– In addition to a very detailed information about

connections contained in various logs, Bro
produces a number of messages to the operator
called notices
• These are contained in separate log files, notice.log and

weird.log

197/269

Policy script interpreting

• Messages to the operator (2)
– A notice is a message from Bro that reports

suspicious behavior of certain traffic elements
– Most often notices escalate into alerts, but it is

possible to just log them or ignore them
– A notice contains information about suspicious

behavior, such as the notice type (which must be
defined in advance in the corresponding policy
script), source information, etc.

198/269

Policy script interpreting

• Messages to the operator (3)
– A special kind of notice is a WeirdActivity notice

• Reports activity that does not conform to standard
protocols

• This might be result of errors in protocol
implementation, errors in communication, but this
might also be a consequence of attack activity (e.g. IDS
evasion attacks)

• Thus, the user can also escalate the WeirdActivity
messages into alarms, but most often they are just
logged

199/269

Policy script interpreting

• Messages to the operator (4)
– The goal of separation of notices into real notices

and weird activity notices is reduction of the
number of false positives

– Obviously, real notices are only generated if the
corresponding policy scripts interpret the events
discovered by the Event module as suspicious

– These scripts then must define the notice types
and other information, which is to be contained in
the notices

200/269

Policy script interpreting

• Messages to the operator (5)
– The weird activity notices are not generated by

the corresponding policy scripts
– Instead, they are generated by the protocol

analyzers if they detect inconsistencies in protocol
implementations or some other problems with
the analyzed protocols

201/269

Policy script interpreting

• Messages to the operator (6)
– Example – a real notice (1)

 1336051829.145903 ------SSH::Password_Guessing
Threshold crossed by
metric_index(host=128.39.140.105) 30/30 -
128.39.140.105 --30 bro Notice::ACTION_LOG,
Notice::ACTION_ALARM 6,5 3600.000000 F -----
128.39.140.105 --

202/269

Policy script interpreting

• Messages to the operator (7)
– Example – a real notice (2)

• This notice warns about an SSH password guessing
activity from the host with the IP address
128.39.140.105

• By default, the number of unsuccessful password trials
for SSH is set to 30 in Bro and the notice reports that
the threshold was exceeded

• This notice will be logged (ACTION_LOG) and an alert
will be raised (ACTION_ALARM)

• The first number in this notice is the time stamp
203/269

Policy script interpreting

• Messages to the operator (8)
– Example – a weird activity notice (1)

 1336051838.706844 xNprNdVSQ88 128.39.140.91
36391 128.39.140.220 80 data_before_established -F
bro

204/269

Policy script interpreting

• Messages to the operator (9)
– Example – a weird activity notice (2)

• This weird activity notice reports about data transfer
from the host with the IP address 128.39.140.91, port
36391, to the host with the IP address 128.39.140.220,
port 80, before the TCP connection was established

• Possible reason for this is portscan activity, but it is up
to the operator to investigate this further and
eventually escalate such events into alerts

205/269

Policy script interpreting

• Policy scripts – Examples (1)
– Example – escalating a notice to an alert (1)

• Portscanning activity observed from a particular group
of hosts

 const suspicious_scanners : set[addr] = {
 128.39.140.170,
 128.39.140.171,
 } &redef;

206/269

Policy script interpreting

• Policy scripts – Examples (2)
– Example – escalating a notice to an alert (2)

 redef Notice::policy += {
 [$action = Notice::ACTION_ALARM,
 $pred(n: Notice::Info) ={
 return n$note == Scan::PortScanSummary &&
 n$src in suspicious_scanners;
 }
]
 };

207/269

Policy script interpreting

• Policy scripts – Examples (3)
– Example – escalating a notice to an alert (3)

• The first part of the script defines a set of suspicious IP
addresses

– Even though the set is constant, it is possible to change the
values in the set, for example in another script or later in the
same script, since the redef keyword is present

• The redef keyword is also used in the second part of
the script, this time to indicate a change in an already
existing constant set

– We change the constant set policy defined in the Notice
framework main script main.bro

208/269

Policy script interpreting

• Policy scripts – Examples (4)
– Example – escalating a notice to an alert (4)

• The notice policy is defined as a constant set of policy
items

• Each policy item is defined between square brackets
• Since the redef keyword is present, it is possible to

modify the default policy set
• This is done in the second part of our script
• We add a new policy item in the notice policy

209/269

Policy script interpreting

• Policy scripts – Examples (5)
– Example – escalating a notice to an alert (5)

• The action of the new policy item is to raise an alert
(ACTION_ALARM)

• pred is a Boolean function that returns the logical value
of the expression given in the return statement

– In our case, it will be true when the notice Info record
element note is equal to Scan::PortScanSummary and the
notice Info record element src has a value equal to some
element of the suspicious scanners set

• The Info record and the policy item are also defined in
the main script of the Notice framework main.bro

210/269

Policy script interpreting

• Policy scripts – Examples (6)
– Example – escalating a notice to an alert (6)

• The $ sign is the dereference operator
– Addresses record fields in the Bro scripting language

• The notice Scan::PortScanSummary is generated by the
Bro script scan.bro

• In the default notice policy it can be observed that only
the notice types contained in the set alarmed types will
cause raising alerts

• By default, this set is empty

211/269

Policy script interpreting

• Policy scripts – Examples (7)
– Example – escalating a notice to an alert (7)

• If we want to make Bro raise alerts on notices of the
type PortScanSummary, we have to include that notice
in the set of alarmed types

• It is a constant set with the redef keyword, so we can
add an element into it by the following script fragment

 redef Notice::alarmed_types += {
 Scan::PortScanSummary
 };

212/269

Policy script interpreting

• Policy scripts – Examples (8)
– Example – escalating a notice to an alert (8)

• However, this statement will cause Bro raising alerts on
portscans originating from any host, not only those
from our set of suspicious scanners

• Because of that, the correct way to alert only on
portscans originating from the set of suspicious
scanners is to modify the policy, as we have done in our
example

213/269

Policy script interpreting

• Policy scripts – Examples (9)
– Example – escalating a notice to an alert (9)

• The script scan.bro is considered to exist in advance
• The Bro system must be instructed to load it in order to

be used
• This means that it must be placed in one of the

standard Bro directories (for example /policy/misc) and
then the site policy script local.bro must be updated by
including the @load statement (for example, @load
misc/scan.bro)

214/269

Policy script interpreting

• Policy scripts – Examples (10)
– Example – escalating a notice to an alert (10)

• Demo
– Display the contents of the file main.bro of the notice

framework
– Run the Example 1

» The script scan.bro is here:
» http://git.bro-ids.org/bro-scripts.git/tree

» The instructions for running the example are in the file
Example1.txt

215/269

http://git.bro-ids.org/bro-scripts.git/tree�

Policy script interpreting

• Policy scripts – Examples (11)
– Example – defining a new notice from an event (1)

• Suppose we would like to raise an alert whenever an
HTTP request is sent from a suspicious client to the
defended Web server in the local network

 const suspicious_clients : set[addr] = {
 128.39.140.60,
 128.39.140.61,
 128.39.140.62,
 } &redef;

216/269

Policy script interpreting

• Policy scripts – Examples (12)
– Example – defining a new notice from an event (2)

 export{
 redef enum Notice::Type +={
 HTTP::SuspiciousRequest
 };
 }

217/269

Policy script interpreting

• Policy scripts – Examples (13)
– Example – defining a new notice from an event (3)

 redef Notice::policy += {
 [$action = Notice::ACTION_ALARM,
 $pred(n: Notice::Info)={
 return n$note == HTTP::SuspiciousRequest;
 }
]
 };

218/269

Policy script interpreting

• Policy scripts – Examples (14)
– Example – defining a new notice from an event (4)

 event http_request(c: connection, method: string,
 original_URI: string, unescaped_URI: string,
 version: string){
 if(cidorig_h in suspicious_clients){
 NOTICE([$note=HTTP::SuspiciousRequest,
 $src=c$id$orig_h,
 $msg="HTTP request from a suspicious client"]);
 };}

219/269

Policy script interpreting

• Policy scripts – Examples (15)
– Example – defining a new notice from an event (5)

• In the first part of the script, we define a set of
suspicious IP addresses

• In the second part of the script, we declare a new
notice type SuspiciousRequest

• The export statement instructs Bro to include the new
notice in the global notice set in the category of
HTTP-related notices

– Without that statement, we could not relate the new notice
with HTTP events

220/269

Policy script interpreting

• Policy scripts – Examples (16)
– Example – defining a new notice from an event (6)

• The next part of the script instructs Bro to raise an alert
on the notice, i.e. it escalates the notice into an alert

• The final part of the script defines the event handler
that generates the notice

221/269

Policy script interpreting

• Policy scripts – Examples (17)
– Example – defining a new notice from an event (7)

• In Bro, many events generated by the event module
already have determined event types

• The list of the existing event types is available in the file
events.bif.bro, which is located in the base set of scripts

• For each event type, a set of corresponding parameters
is defined, which are passed to the event handler that
is written by the user

222/269

Policy script interpreting

• Policy scripts – Examples (18)
– Example – defining a new notice from an event (8)

• In this particular case, the event generated by the
event module is http_request and the parameters
passed to the event handler are the connection record,
the method used in the http request (for example GET),
the original URI, the unescaped URI (i.e. cannonicalized
URI, without UNICODE characters and escape
sequences), and the version of the HTTP protocol used
in the request

223/269

Policy script interpreting

• Policy scripts – Examples (19)
– Example – defining a new notice from an event (9)

• To define the notice, we are going to analyze the
connection record c passed to the event handler

• The connection record contains several fields, some of
which are also records

– For example, it contains the id field, which is a record
containing the IP address of the sender (orig_h), the port of
the sender (orig_p), the IP address of the responder (resp_h),
and the port of the responder (resp_p).

224/269

Policy script interpreting

• Policy scripts – Examples (20)
– Example – defining new notice from an event (10)

• The connection record is defined in the script
init-bare.bro, located in the base set of scripts

• We get the IP address of the sender by dereferencing:
cidorig_h

• In the if statement used in the event handler we check
whether that IP address belongs to the already defined
set of suspicious IP addresses

225/269

Policy script interpreting

• Policy scripts – Examples (21)
– Example – defining new notice from an event (11)

• In the case it belongs to that set, we raise the notice
• This is a new notice, so we call the NOTICE function and

provide the set of notice parameters in the form of a
record

• In this case we use the note field and set its value to
the value already declared in the beginning of the
script

• Then we use the src field to log the originating IP
address of the suspicious traffic

226/269

Policy script interpreting

• Policy scripts – Examples (22)
– Example – defining new notice from an event (12)

• Finally, we define the message to be logged by setting
the value of the msg field to HTTP request from a
suspicious client

• Demo: Run the Example 2
– The instructions for running the example are in the file

Example2.txt

227/269

Policy script interpreting

• Policy scripts – Examples (23)
– Example – anomaly detection with Bro (1)

• Suppose we want to alert on http requests coming
from clients not listed in the set of allowed clients

• This is anomaly detection, as we define what is normal
and all deviations from normal are reported

228/269

Policy script interpreting

• Policy scripts – Examples (24)
– Example – anomaly detection with Bro (2)

 const allowed_clients : set[addr] = {
 128.39.140.60,
 128.39.140.61,
 128.39.140.62,
 } &redef;

229/269

Policy script interpreting

• Policy scripts – Examples (25)
– Example – anomaly detection with Bro (3)

 export{
 redef enum Notice::Type +={
 HTTP::SuspiciousRequest
 };
 }

230/269

Policy script interpreting

• Policy scripts – Examples (26)
– Example – anomaly detection with Bro (4)

 redef Notice::policy += {
 [$action = Notice::ACTION_ALARM,
 $pred(n: Notice::Info)={
 return n$note == HTTP::SuspiciousRequest;
 }
]
 };

231/269

Policy script interpreting

• Policy scripts – Examples (27)
– Example – anomaly detection with Bro (5)

 event http_request(c: connection, method: string,
 original_URI: string, unescaped_URI: string,
 version: string){
 if(!(cidorig_h in allowed_clients)){
 NOTICE([$note=HTTP::SuspiciousRequest,
 $src=c$id$orig_h,
 $msg="HTTP request from a suspicious client"]);
 };}

232/269

Policy script interpreting

• Policy scripts – Examples (28)
– Example – anomaly detection with Bro (6)

• The code is very similar to that presented in the
previous example

• Only the event handler for processing http request
events is different in the sense that the notice is now
raised if the request does not originate from the set of
allowed addresses

• Demo: Run the example 3
– The instructions for running the example are in the file

Example3.txt

233/269

Policy script interpreting

• Logs and alerts in Bro (1)
– Bro performs intensive logging of the activity in

the defended system, but this logging is indirect,
namely the activity is encoded by the
corresponding events

– At the lowest level of logging, every connection is
interpreted as an event and logged as such

234/269

Policy script interpreting

• Logs and alerts in Bro (2)
– Example - a record in the connection log file

conn.log (1)
 1336051819.343513 E6jSfCJ7BNj 128.39.140.91 63392
 128.39.140.220 2909 tcp ----S0 T 0 S 1 44 0 0
• This record gives the operator the following

information (1)
– Time stamp
– The originating IP address and port
– The receiving IP address and port

235/269

Policy script interpreting

• Logs and alerts in Bro (3)
– Example - a record in the connection log file

conn.log (2)
• This record gives the operator the following

information (2)
– The protocol
– Whether the connection was successfully established or not

(in this particular case, the code S0 means that the
connection attempt was observed, but there was no reply)

– The number of bytes present in the originating IP traffic (in
this case, 44 bytes)

236/269

Policy script interpreting

• Logs and alerts in Bro (4)
– Example - a record in the connection log file

conn.log (3)
• The header of the log file conn.log contains information

about the meaning of the record fields
• Each record (i.e. connection) is assigned a unique

identification code (in this particular case, the code is
E6jSfCJ7BNj)

237/269

Policy script interpreting

• Logs and alerts in Bro (5)
– In general, the events generated in the event

module determine also which log files will be
created

– The conn.log is present if any connection is
established during the activity of Bro

– The dns.log reports events related with Domain
Name Service (DNS) and is normally present

238/269

Policy script interpreting

• Logs and alerts in Bro (6)
– The log file weird.log is very often present, since

there are many inconsistencies in Internet traffic
and the Bro event module is not perfect in
determining which protocol is used in the traffic
at hand

239/269

Policy script interpreting

• Logs and alerts in Bro (7)
– The notice.log file is present if any notices were

generated during the execution of Bro
– By default, all the notices are just logged and they

appear in this file
– If we have escalated some notices to alerts, a new

file notice_alarm.log is created, where such
notices are logged, in addition to logging to the
file notice.log

240/269

Policy script interpreting

• Logs and alerts in Bro (8)
– The log file notice_policy.log is always present
– It contains information about actions that will be

triggered by various events
– If any event related with protocols supported by

Bro were generated while Bro was active, the
corresponding log file is created
• Example

– The log file http.log is created if http-related events were
generated by Bro

241/269

Policy script interpreting

• Logs and alerts in Bro (9)
– In addition to the log files related with the

analyzed traffic, there are several log files that
store information about the particular Bro session
• The log file loaded_scripts.log contains the list of all the

scripts loaded in the particular Bro session
• The log file reporter.log stores information about the

execution of Bro
– Among other elements, the number of dropped packets is

reported in that file

242/269

Bro signatures

• In addition to its own original approach to
intrusion detection, Bro also offers classical
signature-based intrusion detection
– Bro uses its own signature language

• Different from Snort
• Offers much more possibilities than Snort
• Not as easy to understand as Snort signatures
• Not compatible with Snort signatures

– The snort2bro conversion script no longer maintained

243/269

Bro signatures

• Bro signature language (1)
– Uses regular expressions
– Example (1)

 signature sig1 {
 ip-proto == tcp
 dst-port == 80
 payload /.*asp/
 event “Suspicious traffic!" }

244/269

Bro signatures

• Bro signature language (2)
– Example (2)

• This signature matches the regular expression .*asp on
the TCP connections directed towards the port 80

• If a match is found, the signature_match event is raised
 event signature_match(state: signature_state, msg: string,

data: string)

245/269

Bro signatures

• Bro signature language (3)
– Example (3)

• In the event signature_match
– signature_state contains information about the connection

that triggered the signature
– msg is the string specified by the event statement in the

signature (Suspicious traffic!)
– data is the last part of payload that triggered the signature

pattern match

246/269

Bro signatures

• Bro signature language (4)
– To escalate a signature match into an alert, we

use the main.bro script of the signature
framework from the base script category
• A default event handler in that script raises, among

other notices, the notice
Signatures::Sensitive_Signature

247/269

Bro signatures

• Bro signature language (5)
– We specify the file name where the signatures are

by extending the variable signature_files in the
script init-bare.bro by means of the += operator

– Demo: run example 4
• bro –i em1 local policy1.bro
• Display the signature file sig1.sig
• Display the bro log files after the http request

248/269

Bro signatures

• Bro signature language (6)
– A signature has the format

 signature <id> { <attributes> }

– <id> is a unique label for the signature
– Two types of attributes

• Conditions
• Actions

– Conditions define when the signature matches
– Actions declare what to do in the case of a match

249/269

Bro signatures

• Bro signature language (7)
– Conditions are divided into 4 categories

• Header
• Content
• Dependency
• Context

250/269

Bro signatures

• Bro signature language (8)
– Header conditions (1)

• Limit the applicability of the signature to a part of
traffic that contains matching packet headers

– For TCP, this match is performed only for the first packet of a
connection

– For other protocols, it is done on each individual packet

251/269

Bro signatures

• Bro signature language (9)
– Header conditions (2)

• In the Header condition, we define the source and
destination IP addresses, the protocol, and the source
and destination ports

252/269

Bro signatures

• Bro signature language (10)
– Content conditions (1)

• Defined by regular expressions
• Two kinds of content conditions

– Declared with the payload statement
» Matched against the raw payload of a connection (for

reassembled TCP streams) or that of each packet (for
ICMP, UDP, and non-reassembled TCP)

– Prefixed with an analyzer-specific label
» Matched against the data extracted by the corresponding

analyzer

253/269

Bro signatures

• Bro signature language (11)
– Content conditions (2)

• A payload condition is of the form
 payload /<regular expression>/

• An analyzer-specific content condition is of the form
 http-request /<regular expression>/

 where instead of http-request other keywords may
appear (http-request-header, http-request-body, http-
reply-header, http-reply-body, ftp, etc.)

254/269

Bro signatures

• Bro signature language (12)
– Dependency conditions (1)

• Define dependencies between signatures
• Two conditions (1)

 requires-signature [!] <id>
» Current signature matches only if the signature given by

id matches for the same connection
» Using ! negates the condition

255/269

Bro signatures

• Bro signature language (13)
– Dependency conditions (2)

• Two conditions (2)
 requires-reverse-signature [!] <id>

» Similar to requires-signature, but id has to match for the
opposite direction of the same connection, compared to
the current signature

» This allows to model the notion of requests and replies

256/269

Bro signatures

• Bro signature language (14)
– Context conditions (1)

• Pass the match decision on to other components of Bro
• Only evaluated if all other conditions have already

matched
• The context conditions

– eval <policy-function>
– payload-size <cmp> <integer>
– same-ip
– tcp-state <state-list>

257/269

Bro signatures

• Bro signature language (15)
– Context conditions (2)

• eval <policy-function>
– The given policy function is called and has to return a

Boolean value confirming the match
– If false is returned, no signature match is going to be

triggered
• payload-size <cmp> <integer>

– Compares the integer to the size of the payload of a packet
– For reassembled TCP streams, the integer is compared to the

size of the first in-order payload portion

258/269

Bro signatures

• Bro signature language (16)
– Context conditions (3)

• same-ip
– Evaluates to true if the source address of the IP packets

equals its destination address

259/269

Bro signatures

• Bro signature language (17)
– Context conditions (4)

• tcp-state <state-list>
– Imposes restrictions on the current TCP state of the

connection
– state-list is a comma-separated list of the keywords

» established (the three-way handshake has already been
performed)

» originator (the current data is send by the originator of
the connection)

» responder (the current data is send by the responder of
the connection)

260/269

Bro signatures

• Bro signature language (18)
– Actions (1)

• Define what to do if a signature matches
• Two possible actions

 event <string>
 enable <string>

261/269

Bro signatures

• Bro signature language (19)
– Actions (2)

• event <string>
– Raises a signature_match event
– The event handler

 event signature_match(state: signature_state, msg:
string, data: string)

» The given string is passed in as msg
» data is the current part of the payload that has eventually

lead to the signature match

262/269

Bro signatures

• Bro signature language (20)
– Actions (3)

• enable <string>
– Enables the protocol analyzer <string> for the matching

connection ("http", "ftp", etc.)
– Used by Bro Dynamic Protocol Detection (DPD) to activate

analyzers

263/269

Bro cluster

• Bro is not multithreaded
– Once the limitations of a single processor core are

reached, Bro cluster spreads the workload across
many cores/physical computers

264/269

Bro cluster

• The Bro cluster framework tools and scripts
perform management of many Bro processes
– Examine packets and perform correlation

activities
– Act as a single entity

• The components of a Bro cluster
– Frontend
– Manager
– Workers

265/269

Bro cluster

266/269

Bro cluster

• Frontend
– A load balancer
– Often a hardware device

• Manager
– A Bro process
– Two primary tasks

• Receiving log messages and notices from the rest of the
nodes in the cluster using the Bro communications
protocol

• De-duplicating notices
267/269

Bro cluster

• Worker
– A Bro process
– Intercepts network traffic and performs protocol

analysis on the reassembled traffic streams
– Most of the work of an active cluster takes place

on the workers
– The workers typically represent the majority of

the Bro processes that are running in a cluster

268/269

Bro cluster

• Proxies
– Special Bro processes
– In addition to the components of a Bro cluster,

the proxies synchronize the states of the workers,
thus making connections of the workers with
other workers unnecessary

– By means of proxies, the workers share
information about the known hosts and services
etc.

269/269

	Bro intrusion detection system - �Principles of operation and internal structure��Slobodan Petrović�NISlab, Gjøvik University College
	Overview of IDS/IPS
	Overview of IDS/IPS
	Overview of IDS/IPS
	Components of an IDS/IPS
	Components of an IDS/IPS
	Components of an IDS/IPS
	IDS/IPS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	IDS classification
	Bro fundamentals
	Bro fundamentals
	Bro fundamentals
	Bro fundamentals
	Bro fundamentals
	Bro fundamentals
	Bro fundamentals
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro building blocks
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Bro operation
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Policy script interpreting
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro signatures
	Bro cluster
	Bro cluster
	Bro cluster
	Bro cluster
	Bro cluster
	Bro cluster

