
How Crypto is Used for Finance

Igor Semaev

May 9, 2012

My Story

I Stayed in Brussels 27.11-30.11.2011

I 2 unexpected withdrawals from my account 10 days later

I > 1000 NOK in GBP paid for internet shopping in UK

I > 40 NOK in EUR (train ticket?)

I Card changing is necessary

How Sparebank Vest protects my money

I ATM, shopping: Chip VISA Card, PIN(secret)

I On-line banking: Social security number(more or less secret),

I Password of my choice(secret),

I One-time password with a calculator

I Internet shopping: Card number(not secret),
Verified-by-VISA password of my choice(secret)

I Why didn’t the latter work?!

Security Tools at Sparebank Vest

I BankAxept for retail shopping

I BankAccess/BankID online shopping and personal
authentication

I One-time password calculator is said related to my account
number. How?

I Information lack

What it is about

I Numerous cases of bank frauds

I Ross Anderson: Why cryptography fails?

I Because not only cryptography matters

I However no cryptography, no modern banking

Why Crypto matters?

I Bank cards were stolen(2001?) from a Norwegian X in Spain

I US$1000 were withdrawn one hour later (correct PIN with the
first attempt)

I Bank: ATM is secure, protected with DES, likely X had kept
the card and the PIN together

I X: PIN was not kept with the card

I Trial: X against bank, lost at a lower court

I Hole et al., 2004: if DES, theoretically possible

I Bank(appeals court): 3DES was used!!!

Hole et al model

64-bit: PIN and Card data

64-bit encrypted data

=?

16-bit Card data

DES key
DES

16-bit proving data

I Card magnetic stripe keeps: Account Number, 16-bit
verification data(PIN, DES key),..

I One DES key for all cards from the same Bank

I Transform: 64-bit ⇒ 16-bit is not publicly available

Attack

I Available same bank cards(one needs 4) with correct PINs:
4× 16-bit constraint on 56-bit key

I Brute force the Bank DES key, 256 trials?(offline phase)

I Brute force the stolen card PIN (online phase)

I Withdraw money

How PIN is generated

I IBM PIN generation method: Account Number ⇒ PIN

I symmetric PIN-key K for all cards from the same Bank

I DES(K)[Account Number] ⇒ 4-decimal digit ”Natural PIN”

I Natural PIN + Offset = Customer PIN

I Magnetic stripe contains Account Number, Offset

I ATM possesses K to verify PIN

I if DES, then Hole et al. attack works as well

French Card/PIN Authentication in 1998

Alice terminal VISA

Authentication?

Data || k-1(H[Data])

PIN ?

1234 1234

PIN ok

I Terminal authenticates the Card, Card verifies PIN

I (k , k−1) =(public, private) Bank RSA keys
I Faked ”yes” card:

1. A copy of the true Data || k−1(H[Data])
2. ”PIN ok” answer to any PIN

I Buy and Withdraw, Data pays

Case Humpich, 1998

I Serge Humpich, French engineer, worked in a bank for 12
years

I Factored RSA 321-bit modulus(> 500-bit that time record)

I Computed k−1 from k
I Created several ”yes” cards:

1. xxx || k−1(H[xxx])
2. ”PIN ok” answer to any PIN

I xxx false Data, so the cards worked off-line

I Bought 10 Paris underground tickets to demonstrate his
invention. Got 10 months in jail and considerable fine

EMV standards

I EMV is Europay, MasterCard, VISA

I EMV protocol for smart card payment to fix the above and
similar cases:

I Hundreds of millions cards in circulation for ATM,
point-of-sell terminals

I called ”Chip and PIN” cards

I Generated ”liability shift”(according to Ross Anderson):

I Now PIN authorized disputed transaction would be charged to
the customer

I Previously, manuscript signature frauds were charged to the
merchant

EMV at a Glance

I EMV Specification for Payment Systems, version 4.3,
November 2011, based on ISO standards. Three stages:

I Card Authentication assures the terminal: which Bank issued
the Card, and that Card data haven’t been altered

I Cardholder Verification off-line: entered PIN matches one on
the Card. On-line verification is not specified

I Transaction Authorization: Bank authorizes the transaction

What the chip does?

I Tiny computer keeps

1. cardholder’s PIN
2. symmetric encryption keys
3. card private asymmetric key

I computes(verifies) digital signatures, encryptions with e.g.

I RSA cryptosystem

I 3DES, AES

I Message Authentication Code(MAC) for integrity and
authentication

Dynamic Card Authentication off-line

Alice Terminal VISA

Authentication?

Data || k
B

-1(H[Data])

k
S

-1(k
B
) || k

B

-1(k
C
) ||

Nonce
T

k
C

-1(Nonce
T

|| Nonce
C
)

I Card provides:

1. k−1
S (kB) certified Bank public key

2. k−1
B (kC) certified Card public key

I Terminal holds kS , recovers kB and kC . Verifies

1. Data || k−1
B (H[Data]) with kB

2. k−1
C (NonceT ||NonceC) with kC

Cardholder Verification off-line

Alice terminal VISA

PIN?

k
C
(1234 || Nonce

C
,Pad)

1234

PIN ok

Nonce
C

I Specific for points-of-sell

I Alice introduces the PIN

I Terminal encrypts the PIN with the card publ. key kC
I Card decrypts the PIN and compares with what on the chip

Transaction authorization

Alice Terminal VISA

T=amount || currency || date || Nonce

TC=Data || MAC[ARC || T || Data]

Bank

ARC || MAC[ARQC+ARC]

ARQC= T || Data || MAC[T || Data]

I ARQC authorization request cryptogram

I ARC authorization response code

I TC transaction certificate

I MAC depends on a symmetric key shared by Card and Bank

Steven Murdoch Attack

Murdoch TERMINAL FAKED CARD

BANK

COMPUTER READER STOLEN CARD

PIN?

0000 k
C
(0000)

PIN ok

I Stolen card does Card Authentication

I Cardholder Verification: ”yes” to any PIN

I Stolen card does Transaction Authorization

I A protocol flaw is exploited, does not seem fixed in EMV 4.3

Security Mechanisms

I Block ciphers and MAC

I Symmetric Key Management

I Hash-functions and HMAC

I RSA

I Elliptic Curve Crypto(ECC)

Block Ciphers and MAC

I Block Ciphers

I MAC Computation

I How MAC works

Block Ciphers

I For Message Authentication Code (MAC) and encrypting in
on-line PIN-verification

I ALG n-byte block cipher algorithm

I n = 8 for 3DES and n = 16 for AES128(256)

I plain-text X1, . . . ,XB to cipher-text Y1, . . . ,YB

I K encryption key

I ECB: Yi = ALG(K)[Xi]

I CBC: Y0 = 0 and Yi = ALG(K)[Xi ⊕ Yi−1]

Key Management

I Session Key Derivation

I Card Master Key Derivation

Card Master Key Derivation

I Bank(Issure) master key IKM

I Y padded Account Number

I ZL = 3DES(IKM)[Y]

I ZR = 3DES(IKM)[Y ⊕ C]

I C constant

I 3DES: KM = ZL,ZR after setting parity for DES keys

I Similar for AES

I KM put on the Card chip

Session Key Derivation

I Card and Bank share Card master key KM

I Diversification 8(16)-byte value: R = TransactionData, 0.., 0

I MAC session key:

I KS =truncate(ALG(KM)[R]||ALG(KM)[R ⊕ C])

MAC Computation

I 8-byte ciphers, MAC of 4 ≤ s ≤ 8 bytes

I 3DES: KS 128-bit session key(with parity redundancy)

I H0 = 0 and Hi = ALG(KS)[Xi ⊕ Hi−1] for i ≤ B,
MAC=truncate(HB)

I DES: KS = KSL,KSR session key

I H0 = 0 and Hi = ALG(KSL)[Xi ⊕ Hi−1]

I MAC=truncate(ALG(KSL)[ALG−1(KSR)[HB])

I Similar with 16-byte AES

How MAC works?

I Data = X1, . . . ,XB message from Card to Bank

I Card sends Data||MAC(KS)[Data]

I This session key KS depends on the transaction and master
key KM

I Bank shares KM , it computes KS ,MAC(KS)[Data]

I Thus Bank verifies the text integrity and authenticity

I Similar to signature, though does not provide non-repudiation

Hash Function and HMAC

I SHA-1 with RSA in EMV 4.3: 20-byte output

I SHA-256, SHA-512 with ECC according to the draft EMV
4.1z ECC

I HMAC a hash-function based MAC

I HMAC(K ,MSG) = Hash[K ⊕ C1||Hash[K ⊕ C2||MSG]]

RSA

I RSA functions

I Signature Generation/Verification

I Secure RSA Key Generation

RSA functions

I RSA Public key Pk : n = pq and e = 3 or 216 + 1

I RSA Private key SK : n = pq and d , where de = 1
mod (p − 1)(q − 1)

I S = Sign(SK)[X] = X d mod n (also Decryption)

I X = Recover(PK)[S] = Se mod n (also Encryption)

Signature Generation/Verification

I Compute 20-byte H = Hash(MSG)

I Split MSG = MSG1||MSG2

I N-byte X = MSG1||H||Constant

I To Sign: S = Sign(SK)[X],

I Signed message: MSG||S

I To verify: X = Recover(PK)[S]

I So recover MSG1, and H, and Constant

I compute Hash(MSG)

I Compare

RSA Key Generation

I Fixed e, each card has its own n = pq and d

I Massive production p, q is required
I Security requirements:

1. p − q large
2. p − 1 has a large prime factor
3. prime r |p − 1, then r − 1 has a large prime factor

I Probable prime: likely prime, small error probability

I Provable prime: there is a proof

Probable Primes with Rabin Test

I N odd natural number to test

I N − 1 = a2h, a is odd

I Randomly choose b,

I ”Pass” if ba ≡ ±1 mod N

I or ba2
i ≡ −1 mod N, where 0 < i < h

I ”Fail” otherwise

I Pr(”Pass”|N composite) ≤ 1
4

Provable Primes with Poklington Theorem

I N odd natural number to test

I N − 1 = F × R, and q1, . . . , qt distinct prime factors in F
I Let for some a

1. aN−1 ≡ 1 mod N
2. gcd(a(N−1)/qi − 1,N) = 1 for all i = 1, .., t

I and F >
√
N

I Then N is prime

I Improvement by Brillhart, Lehmer, Selfridge: F > 3
√
N and

some additional condition

I Combination: first Rabin, then Poklington

Elliptic Curve Crypto

I Why ECC?

I Brief definitions

I Recommended Curves

I ECC Signature Algorithm

I ECC Verification Algorithm

I ECC for Encrypting

Why ECC?

I EMV: RSA public key is up to 248 bytes=1948 bits

I Factoring progress: December 2009, 768-bit RSA modulus
was factored

I RSA vulnerability⇒ modulus increases

I No progress(until very recently in binary case) in discrete log
on elliptic curves

I Move to elliptic curve crypto?

I Same security with lower parameters

I EMV proposes ECC to start 2015

Elliptic Curve

I Modulus: prime number p

I Set E = (x , y) mod p : y2 = x3 + ax + b and P∞. FIPS
186-2: a = −3

I Group operation:

(x1, y1) + (x2, y2) = (x3, y3)

I x3, y3 are rational functions in x1, y1, x2, y2
I Relatively easy to compute, a few multiplications mod p

I Cyclic subgroup generator G ∈ E of order n

I Private key d mod n, Public key P = d × G

I Given G : P ⇒ d is hard(Elliptic Curve discrete log problem)

Recommended Curves

I curve P − 256

I Modulus p = 2256 − 2224 + 2192 + 296 − 1, explicit b, n,G

I curve P − 512

I Modulus p = 2512 − 1, explicit b, n,G

ECC Signature Algorithm

I To sign message MSG

I Take random k mod n

I Compute kG = (x1, y1) and r ≡ x1 mod n

I Compute s ≡ k−1(Hash[MSG] + d r) mod n

I Signature s, r

ECC verification algorithm

I To verify MSG signature s, r

I Compute u1 ≡ Hash[MSG] s−1 mod n

I Compute u2 = r s−1 mod n

I Compute (x0, y0) = u1G + u2P

I Verify the congruence r ≡ x0 mod n

ECC for Encrypting

I Used for PIN encipherment

I Combination of ECC and Hash algorithm

I approved Hash algorithms:

I for P-256 SHA-256

I for P-512 SHA-512

I Generates HMAC on the cipher-text

ECC encryption algorithm

I PIN ⇒ 17-byte MSG

I Random k , compute kP and kG

I Key-stream: K1||K2||.. = Hash[kP|| 0..01]||Hash[kP|| 0..02]

I Encrypting X = K1 ⊕MSG

I T = HMAC(K2||X)

I Encrypted message kG ||X ||T
I To decrypt X and verify T :

I Compute kP = d(kG), generate key-stream,..

SSL/TSL protocol

I Secure Sockets Layer (SSL) since 1994

I Transport Security Layer (TSL) since 1999, last version 2011

I Provides communication security over the Internet: on-line
shopping

I The transaction was protected with 128-bit SSL?

SSL/TSL protocol Goals

I Negotiate Crypto-tools:

I Asymmetric crypto for key exchange

I Symmetric encryption for privacy

I Message authentication codes (MAC) for message integrity

I Negotiate key material for Symmetric Encryption and MAC

Phase 1: Handshake Protocol

Client Server

ClientHello: Nonce, CipherSuites

ServerHello: Nonce, CipherSuite

I CipherSuites:
TLS RSA WITH AES 128 CBC SHA256
...
TLS DH DSS WITH 3DES EDE CBC SHA

I The Server chooses a CipherSuite to use

Phase 2: share 48-byte PremasterSecret

Client Server

ClientKeyExchange Message

ServerCertificate/ KeyExchange

I Server Message: if RSA, contains k−1CA(kS)

I if DH DSS, certified DSA public key, certified p, g , g x mod p

I Client Message: if RSA, contains kS(PremasterSecter)

I if DH, contains(certified?) g y mod p

Phase 3: PremasterSecret → MasterSecret

I if RSA, then Client, Server share PremasterSecret

I if DH, PremasterSecret = truncated g xymodp

I MasterSecret=PRF(PremasterSecret,”master
secret”,ClientNonce+ServerNonce) truncated to 48 bytes

I PRF PseudoRandomFunction constructed with SHA256
based HMAC

Phase 4: Key Calculation

I KeyBlock=PRF(MasterSecret,”key
expansion”,ClientNonce+ServerNonce)

I of length enough for the CipherSuite
I KeyBlock is partitioned to

1. Client MAC key
2. Server MAC key
3. Client symmetric key
4. Server symmetric key
5. Client IV(if necessary)
6. Server IV(if necessary)

I AES 256 CBC SHA256 requires maximum of 128 bytes of
key material

