### OUTLINE



- GREYC E-payment & Biometrics
- Electronic transactions
- General definitions on biometrics
- Mobile biometric authentication
- Protection of biometric data
- Perspectives



### **Mobile biometric authentication**



### Two types of device:

- □ Specific ones with a biometric sensor
- Classic ones

43

### Two locations for the biometric authentication:







### Match and capture on device

### Fingerprint sensor



http://www.authentec.com/



## **Specific solutions: user**



### Match and capture on contactless card solution



## **Specific solutions: terminal**



### Match and capture on device solution



### http://www.taztag.com/

## **Specific solutions: terminal**



### Capture on device solution



### http://ekemp.en.alibaba.com



47 http://www.naturalsecurity.com/



http://www.acs.com.hk/



http://www.supremainc.com/

## **Specific solutions**



### **Discussion**:

□ There are many solutions especially for terminals

Nearly all of them use fingerprint as biometric modality

- $\checkmark$  well known and cheap technology
- $\checkmark$  fast capture and verification
- ✓ very good performance





48

## **Other solutions**



### Solutions without any specific sensor:

- □ Smartcard:
  - $\checkmark$  storage of the biometric template
  - $\checkmark$  match on card
- □ Smart object (mobile phone, tablet, laptop...)
  - ✓ webcam:
    - Face recognition
    - Hand shape
    - Finger knuckle print
    - Ear...



Finger Knuckle Print









## **Other solutions**



- □ Smart object (mobile phone, tablet, laptop...)
  - $\checkmark$  microphone :
    - speaker recognition: text-dependent or free-text
  - ✓ keyboard :
    - keystroke dynamics: passphrase, password or challenge
  - $\checkmark$  touch screen :
    - Interaction: passphrase, password, challenge, task
    - signature dynamics



## **Other solutions**



### **Discussion**:

- □ There are many possible solutions
- □ The most interesting candidates are:
  - ✓ voice
  - $\checkmark$  touch screen interaction
  - ✓ signature dynamics
  - ✓ face
  - $\checkmark$  hand shape



### OUTLINE



- GREYC E-payment & Biometrics
- Electronic transactions
- General definitions on biometrics
- Mobile biometric authentication
- Protection of biometric data
- Perspectives





### Why is it necessary ?

- Personal data
- Difficult to revoke a biometric data
- Can be captured without any consent
- □ Its encryption is not sufficient







### Attacks on a biometric system:









### Attacks on a biometric system:



http://www.thatsmyface.com/





### Security index of a biometric systems





### Security index of a biometric systems

#### http://www.epaymentbiometrics.ensicaen.fr/securityEvaBio/

| EvaBio Evaluation Platform                                                                                                                                                                                                                                                                                                      |                                                   | EvaBio Evaluation Platform                                                                                                                                                                                                                                                                                        |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Home Manual About Us Contact Reserved                                                                                                                                                                                                                                                                                           |                                                   |                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                 |                                                   | Keystroke Modality Assessment                                                                                                                                                                                                                                                                                     | Latest News          |
| EvaBio: on-line evaluation platform of biometric authentication systems                                                                                                                                                                                                                                                         | Latest News                                       |                                                                                                                                                                                                                                                                                                                   | Upcoming Conferences |
| EvaBio is a web-based automated evaluation platform towards the security evaluation of biometric<br>authentication systems. The presented platform implements a quantitative-based assessment method<br>based on a database of common threats and vulnerabilities of biometric systems, and the notion of risk<br>factors.      | Upcoming Conferences<br>Biometrics Research Group | Point 1: Sensor Assessment                                                                                                                                                                                                                                                                                        |                      |
| The aim of the platform is twofold. First, it allows the biometric researchers to easily evaluate their<br>developed systems using the presented security assessment method. Second, it aims to enhance the<br>presented database of common threats and vulnerabilities of biometric systems based on researchers<br>feedbacks. |                                                   |                                                                                                                                                                                                                                                                                                                   |                      |
|                                                                                                                                                                                                                                                                                                                                 |                                                   | 1 - How would you rate the difficulty of exploiting residual data from your system capture sensor?       3         2 - How would you rate the sensor protection against physical tampering? (e.g., a system implemented in a public place is more vulnerable then a one implemented in a protected place)       1 |                      |
|                                                                                                                                                                                                                                                                                                                                 |                                                   | Points 2 and 4: Transmission Channels Assessment                                                                                                                                                                                                                                                                  |                      |
| Connexion Login Login Password                                                                                                                                                                                                                                                                                                  |                                                   |                                                                                                                                                                                                                                                                                                                   |                      |
| Login                                                                                                                                                                                                                                                                                                                           |                                                   | 3 - How would you rate the efficiency of your system in detecting replayed data to the feature<br>extractor and the matcher components (emph(e.g.), a system implementing an authentication<br>fest between system components would be more effective against such kind of attacks)                               | •                    |
|                                                                                                                                                                                                                                                                                                                                 |                                                   | 4 - How would you rate the physical protection of your system communication links against tampering (such as cutting links)?                                                                                                                                                                                      | •                    |
| COPYRIGHT © 2011                                                                                                                                                                                                                                                                                                                |                                                   | 5 - How would you rate the robustness of your system in preventing information alteration from<br>a communication channel (emp/leg ), a system implementing infegrity test between system<br>components would be more effective against such kind of attacks)?                                                    | •                    |
|                                                                                                                                                                                                                                                                                                                                 |                                                   |                                                                                                                                                                                                                                                                                                                   |                      |

### Solutions:

- Secure architectures: store the biometric data in a secure element, avoid its transmission, match on card...
- □ Algorithmic solutions: transform the biometric data (cancelable biometrics), crypto-biometrics (fuzzy vault)..
- Combinations of the two previous solutions





### Authentication / Reference stored in a secure element:











### Authentication / Shared reference:





### Authentication / Local processing/ Reference stored in a SE:





63



### Authentication / Match on card:



### Authentication / Sensor and match on Card:





GREYC



### Algorithmic solutions:

66



Source: Jain, Nandakumar and Nagar, "Biometric Template security", EURASIP J. on Advances in Signal Processing, 2008

### **Cancelable biometrics:** make the biometric template revocable



N. Ratha, J. Connelle, and R. Bolle, "Enhancing security and privacy in biometrics-based authentication system," IBM Systems J., vol. 37, no. 11, pp. 2245–2255, 2001.



67



### **Biohashing process:**





$$R_z = \mathbb{1}_{\{D_T(f(b_z, K_z), f(\dot{b_z}, K_z)) \leq \epsilon_T\}}$$

Where :

- R<sub>z</sub> : decision result for the verification of user z using the cancelable system,
- $D_T$  : distance function in the transformed domain,
- f : the feature transformation function,
- $b_z$ ,  $\dot{b_z}$  represent the template and query biometric features of user z,
- $K_z$  : set of transformation parameters,
- $\epsilon_T$  : decision threshold.



(1)



#### **Properties:**

- Given the BioCode, the biometric raw data cannot be retrieved,
- □ Only the BioCode is stored,
- If the BioCode is intercepted, a new one can be generated,
- An individual can have many BioCodes for different applications,
- □ The BioHashing process improves performances,
- □ The comparison of two BioCodes is very fast (simple Hamming distance)



# GREYC

Biocod

0.9

#### **Performance evaluation:**



|            | 128 bits | 256 bits | 512 bits |
|------------|----------|----------|----------|
| FingerCode | 19%      | 18%      | 17%      |
| BioCode    | 0%       | 0%       | 0%       |

EER values for different sizes of the FingerCode and BioCode



# DEMO

| Greyc Biocode      |                      |                     |                                                                                 |
|--------------------|----------------------|---------------------|---------------------------------------------------------------------------------|
| Data               | base                 | Fingerprint Capture | Biocode                                                                         |
| Use                | ers                  |                     | Normal Barcode Short Barcode Very Short Barcode                                 |
| User<br>christophe | name                 |                     | FDF5BED618513EFA3B9E64D7C9446E8C<br>73,33 %<br>FF6DBCD7A5E27EF8ABDA61F7C1643E99 |
| Username<br>Secret | christophe<br>azerty | Secret azerty       |                                                                                 |
|                    | Enroll               | Verify              | GREYC                                                                           |





### Study of the robustness of the solution

#### Security properties

73

- **Performance** : the template protection shall not deteriorate the performance of the original biometric system,
- Revocability or renewability : it shoud be possible to revoke a biometric template.
- Non-invertibility or irreversibility : from the transformed data, it should not be possible to obtain enough information on the original biometric data to forge a fake biometric template,
- **Diversity or unlinkability** : it should be possible to generate different biocodes for multiple applications, and no information should be deduced from their different realizations.

R. Belguechi, E. Cherrier, C. Rosenberger, "How to Evaluate Transformation Based Cancelable Biometric Systems?", NIST International Biometric Performance Testing Conference 2012.



### Study of the robustness of the solution

### Probability of a sucessful attack by an impostor

$$FAR_{A}(\epsilon_{T}) = P(D_{T}(f(b_{z}, K_{z}), A_{z}) \le \epsilon_{T})$$
(3)

Where :

- $FAR_A(\epsilon_T)$ : probability of a successful attack by the impostor for the threshold  $\epsilon_T$ .
- $A_z$  : generated biocode by the impostor with different methods,
- We can consider  $\epsilon_T = \epsilon_{EER_T}$  ( $\epsilon_{EER_T}$  : threshold to have the EER functionning point of the cancelable biometric system).





### Study of the robustness of the solution

### A priori information used by the impostor

• Zero effort attack (A<sub>2</sub>) :

An impostor provides one of its biometric sample to be authenticated as the user  $z : A_z = f(\dot{b_x}, K_x)$ ,

Brute force attack :

An impostor tries to be authenticated by trying different random values of  $A : A_z = A$ ,

• Stolen token attack :

An impostor has obtained the token  $K_z$  of the genuine user z and tries different random values of b to generate :  $A_z = f(b, K_z)$ ,

• Stolen biometric data attack : An impostor knows  $\dot{b_z}$  and tries different random numbers K to generate :  $A_z = f(\dot{b_z}, K)$ .





### Study of the robustness of the solution

#### Listening attacks

For each template of the genuine user :

- Generation of Q biocodes  $B_z = \{f(b_z, K_z^1), .., f(b_z, K_z^Q)\}$  for user z,
- Prediction of a possible biocode value by setting the most probable value of each bit given  $B_z$ ,
- Computation of equation (2).  $\Rightarrow A_7$  value for Q = 3 and  $A_8$  for Q = 11



### Attacking on fingerprints



Analysis on fingerprints (FVC 2002)

 R. Belguechi, E. Cherrier, C. Rosenberger, "Texture based Fingerprint BioHashing : Attacks and Robustness", IEEE/IAPR International Conference on Biometrics (ICB), p.7, 2012





### Attacking on finger knuckle prints



Analysis on finger knuckle prints (POLY FKP)

R. Belguechi, E. Cherrier, M. El Abed and C. Rosenberger, "Evaluation of Cancelable Biometric Systems : Application to Finger-Knuckle-Prints", IEEE International Conference on Hand-based Biometrics, 2011

78





### **New attack**

Is it possible to determine the biometric feature knowing the secret key and the BioCode ?

### What to do ?

To generate other BioCodes (after revokation)

It is a useful attack if the BioCode and the secret key are stored on an unsecure location (centralized database as for example)







### **New attack**

Task: determine bz knowing f(bz,Kz) and Kz Use a genetic algorithm Solution: random value bz' Minimize DT(f(bz,Kz),f(bz',Kz)) It works !



### OUTLINE



- GREYC E-payment & Biometrics
- Electronic transactions
- General definitions on biometrics
- Mobile biometric authentication
- Protection of biometric data
- Perspectives







#### **Biometric authentication is necessary**

- To make a real user authentication
- In order to guarantee the security of a mobile (contactless) transaction
- □ Many candidates biometric modalities
- Using secure elements to store and processing the data
- Many robust algorithmic solutions to enhance the privacy of users exist







### **Perspectives**



### Many trends have to be considered

- Centralized or decentralized storage of biometric data (example of UID in India)
- □ Is one biometric data enough ?
- □ Will it be possible to use biometric data enrolled by governments ?
- □ How to avoid the replay attack ?
- Is there any other biometric modalities that could be used (tongue...)
- Are services ready to use an authentication that "could" be good ?







#### New biometric modalities

## Can we be recognized based on what we think ?

Very soon...









### http://www.epaymentbiometrics.ensicaen.fr/

