

#### Towards Privacy Preserving Mobile Communications

George Petrides

(with Kristian Gjøsteen and Asgeir Steine)

8<sup>th</sup> May 2012 Information Security Research School Finse Current Situation (very loosely speaking)

Mobile Network Operators (MNOs) – e.g. Telenor, Netcom:

- **1** Maintain the communication infrastructure (base stations).
- Subscribe users (SIM cards with embedded symmetric key & IMSI).
- I Bill subscribers and other MNOs for services.
  - Virtual Network Operators (MVNOs) e.g. Chess.



When Alice switches on her phone:

**①** Authenticates to  $\mathcal{N}_A$  using IMSI and embedded key.



- $\textcircled{0} \quad \text{Authenticates to } \mathcal{N}_A \text{ using IMSI and embedded key.}$ 
  - $\mathcal{N}_A$  learns her identity & location (base station)

- $\textcircled{0} Authenticates to \mathcal{N}_A using IMSI and embedded key.$ 
  - $\mathcal{N}_A$  learns her identity & location (base station)
- **2**  $\mathcal{N}_A$  sents her TMSIs for subsequent position updates.

- $\textcircled{0} \quad \text{Authenticates to } \mathcal{N}_A \text{ using IMSI and embedded key.}$ 
  - $\mathcal{N}_A$  learns her identity & location (base station)
- **2**  $\mathcal{N}_A$  sents her TMSIs for subsequent position updates.
  - Eavesdroppers can't follow Alice around.

- 0 Authenticates to  $\mathcal{N}_A$  using IMSI and embedded key.
  - $\mathcal{N}_A$  learns her identity & location (base station)
- **2**  $\mathcal{N}_A$  sents her TMSIs for subsequent position updates.
  - Eavesdroppers can't follow Alice around.
  - $\mathcal{N}_A$  can!

- 0 Authenticates to  $\mathcal{N}_A$  using IMSI and embedded key.
  - $\mathcal{N}_A$  learns her identity & location (base station)
- **2**  $\mathcal{N}_A$  sents her TMSIs for subsequent position updates.
  - Eavesdroppers can't follow Alice around.
  - $\mathcal{N}_A$  can!
  - Active attackers can too! (IMSI-catchers)

If Alice wants to call Bob:

- $\bullet\,$  Alice updates her position to  $\mathcal{N}_A$  and asks to contact Bob -
- $\mathcal{N}_A$  contacts Bob through  $\mathcal{N}_B$  -
- $\bullet\,$  Alice and Bob exchange messages via  $\mathcal{N}_A$  and  $\mathcal{N}_B$  -

4

If Alice wants to call Bob:

- Alice updates her position to  $N_A$  and asks to contact Bob  $N_A$  learns who she wants to talk to.
- $\mathcal{N}_A$  contacts Bob through  $\mathcal{N}_B$  -
- $\bullet\,$  Alice and Bob exchange messages via  $\mathcal{N}_A$  and  $\mathcal{N}_B$  -

If Alice wants to call Bob:

- Alice updates her position to  $N_A$  and asks to contact Bob  $N_A$  learns who she wants to talk to.
- $\mathcal{N}_A$  contacts Bob through  $\mathcal{N}_B$   $\mathcal{N}_B$  learns Bob's location.
- $\bullet\,$  Alice and Bob exchange messages via  $\mathcal{N}_A$  and  $\mathcal{N}_B$  -

If Alice wants to call Bob:

- Alice updates her position to  $N_A$  and asks to contact Bob  $N_A$  learns who she wants to talk to.
- $\mathcal{N}_A$  contacts Bob through  $\mathcal{N}_B$   $\mathcal{N}_B$  learns Bob's location.
- Alice and Bob exchange messages via  $N_A$  and  $N_B$   $N_A$  and  $N_B$  listen to their conversation.

If Alice wants to call Bob:

- Alice updates her position to  $N_A$  and asks to contact Bob  $N_A$  learns who she wants to talk to.
- $\mathcal{N}_A$  contacts Bob through  $\mathcal{N}_B$   $\mathcal{N}_B$  learns Bob's location.
- Alice and Bob exchange messages via  $N_A$  and  $N_B$   $N_A$  and  $N_B$  listen to their conversation.

 $\mathcal{N}_A$  and  $\mathcal{N}_B$  (possibly one and the same) learn EVERYTHING there is to know: Who, Where and What.

#### New Privacy Preserving Setting

- We would prefer if  $\mathcal{N}_A$  can't follow Alice around
  - but would still like to have authenticated seamless connection.
- Also, the identity of Bob and the contents of their conversation should be kept private.

#### New Privacy Preserving Setting

- $\bullet$  We would prefer if  $\mathcal{N}_{\mathcal{A}}$  can't follow Alice around
  - but would still like to have authenticated seamless connection.
- Also, the identity of Bob and the contents of their conversation should be kept private.

Proposal: Split MNOs in two: MNOs and SPs (Service Providers)

MNOs

- Maintain the communication infrastructure (base stations).
- Bill SPs for services.
- 2 SPs
  - Subscribe users (SIM card with embedded symmetric key & identity token).
  - Bill subscribers for services.

This is not crazy - similar to MNO-MVNO case!

Alice establishes a secure channel with nearest  $\mathcal{N}$ .

- Diffie-Hellman key exchange.
- Anonymous by use of pseudonym *ps<sub>A</sub>*.

Alice establishes a secure channel with nearest  $\mathcal{N}$ .

- Diffie-Hellman key exchange.
- Anonymous by use of pseudonym  $ps_A$ .

How does  $\mathcal{N}$  know that user  $ps_A$  is a subscriber?

**1** Alice (user  $p_{S_A}$ ) identifies herself to  $SP_A$  using token

 $\mathcal{T}_{A} = Enc\{Alice||smth\}_{\mathcal{K}_{S\mathcal{P}_{A}}}.$ 

**2**  $SP_A$  confirms to N that user  $p_{S_A}$  is subscribed.

Alice establishes a secure channel with nearest  $\mathcal{N}$ .

- Diffie-Hellman key exchange.
- Anonymous by use of pseudonym *ps<sub>A</sub>*.

How does  $\mathcal{N}$  know that user  $ps_A$  is a subscriber?

**1** Alice (user  $p_{S_A}$ ) identifies herself to  $SP_A$  using token

 $\mathcal{T}_{A} = Enc\{Alice||smth\}_{\mathcal{K}_{S\mathcal{P}_{A}}}.$ 

**2**  $SP_A$  confirms to N that user  $p_{S_A}$  is subscribed.

-  $\mathcal{N}$  only learns that a user  $ps_A$  at location  $loc_A$  is a subscriber of  $\mathcal{SP}_A$ . -  $\mathcal{SP}_A$  only learns that subscriber Alice is connecting to  $\mathcal{N}$  from somewhere.

Alice establishes a secure channel with nearest  $\mathcal{N}$ .

- Diffie-Hellman key exchange.
- Anonymous by use of pseudonym *ps<sub>A</sub>*.

How does  $\mathcal{N}$  know that user  $ps_A$  is a subscriber?

**1** Alice (user  $p_{S_A}$ ) identifies herself to  $SP_A$  using token

 $\mathcal{T}_{A} = Enc\{Alice||smth\}_{\mathcal{K}_{S\mathcal{P}_{A}}}.$ 

- **2**  $SP_A$  confirms to N that user  $ps_A$  is subscribed.
- $\mathcal{N}$  only learns that a user  $ps_A$  at location  $loc_A$  is a subscriber of  $S\mathcal{P}_A$ . -  $S\mathcal{P}_A$  only learns that subscriber Alice is connecting to  $\mathcal{N}$  from somewhere.

 $\mathcal{N}$ - $\mathcal{SP}_A$  collusion leaks all!

#### User-MNO Key Establishment - The Protocol

Alice $\mathcal{N}$  $\mathcal{SP}_A$  $(ps_A)$  $\mathcal{SP}_A$ 

 $(\mathcal{T}_A, n_A, g^x, \mathcal{SP}_A)$ 

# $\begin{array}{c|c} \text{User-MNO Key Establishment - The Protocol} \\ \text{Alice} & \mathcal{N} & \mathcal{SP}_A \\ (ps_A) & & \\ & (\mathcal{T}_A, n_A, g^{\times}, \mathcal{SP}_A) & (\mathcal{T}_A, n_A, n_\mathcal{N}) \end{array}$

7

### User-MNO Key Establishment - The Protocol Alice $\mathcal{N}$ $\mathcal{SP}_A$ $(p_{s_A})$ $(\mathcal{T}_A, n_A, g^{\times}, \mathcal{SP}_A) \xrightarrow{} (\mathcal{T}_A, n_A, n_N) \xrightarrow{}$ $Enc\{n_A, n_N, n_{\mathcal{SP}_A}, \mathcal{T}_A, \mathcal{T}_A', \mathcal{N}\}_{\mathcal{K}_A}$

## User-MNO Key Establishment - The Protocol Alice $(ps_A)$ $\mathcal{N}$ $\mathcal{SP}_A$ $\mathcal{SP}_A$ $\mathcal{I}_A, n_A, g^x, \mathcal{SP}_A$ $\mathcal{I}_A, n_A, n_N$ $\mathcal{I}_A, n_A, n_N$ $\mathcal{I}_A, n_A, n_N$ $\mathcal{I}_A, n_A, n_N$ $\mathcal{I}_A, n_A, n_N$

#### User-MNO Key Establishment - The Protocol $\mathcal{N}$ SPA Alice $(ps_A)$ $(\mathcal{T}_A, n_A, g^x, \mathcal{SP}_A)$ $(\mathcal{T}_A, n_A, \underline{n_N})$ $Enc\{n_A, n_N, n_{SP_A}, \mathcal{T}_A, \mathcal{T}_A', \mathcal{N}\}_{\mathcal{K}_A}$ $n_{\mathcal{N}}$ $(g^{y}, Sign_{\mathcal{K}_{\mathcal{N}}})$

User-MNO Key Establishment - The Protocol  $\mathcal{N}$ SPA Alice 🙂  $(ps_A)$  $(\mathcal{T}_A, n_A, g^x, \mathcal{SP}_A)$  $(\mathcal{T}_A, n_A, \underline{n}_N)$  $Enc\{n_A, n_N, n_{SP_A}, \mathcal{T}_A, \mathcal{T}_A', \mathcal{N}\}_{\mathcal{K}_A}$  $n_{\mathcal{N}}$  $(g^{y}, Sign_{\mathcal{K}_{\mathcal{N}}})$  $(n_{\mathcal{SP}_A}, MAC_{H(00||g^{xy})})$ 

User-MNO Key Establishment - The Protocol  $\mathcal{N}$   $\bigcirc$ SPA Alice 🙂  $(ps_A)$  $(\mathcal{T}_A, n_A, g^x, \mathcal{SP}_A)$  $(\mathcal{T}_A, n_A, n_N)$  $Enc\{n_A, n_N, n_{SP_A}, \mathcal{T}_A, \mathcal{T}_A', \mathcal{N}\}_{\mathcal{K}_A}$  $n_{\mathcal{N}}$  $(g^{y}, Sign_{\mathcal{K}_{\mathcal{N}}})$  $(n_{SP_A}, MAC_{H(00||g^{xy})})$  $n_{SP_A}$ 

User-MNO Key Establishment - The Protocol  
Alice 
$$(ps_A)$$
  $\mathcal{N}$   $\mathcal{SP}_A$   $\mathcal{O}$   
 $(T_A, n_A, g^x, \mathcal{SP}_A)$   $(T_A, n_A, n_N)$   
 $(T_A, n_A, n_N, n_{\mathcal{SP}_A}, \mathcal{T}_A, \mathcal{T}'_A, \mathcal{N}_{\mathcal{K}_A})$   
 $(g^y, Sign_{\mathcal{K}_N})$   
 $(n_{\mathcal{SP}_A}, MAC_{H(00||g^{xy})})$   $n_{\mathcal{SP}_A}$   
 $ok$ 

7

User-MNO Key Establishment - The Protocol  
Alice 
$$(ps_A)$$
  $\mathcal{N}$   $\mathcal{SP}_A$   $\mathcal{P}_A$   $\mathcal{P}_A$   
 $(T_A, n_A, g^x, \mathcal{SP}_A)$   $(T_A, n_A, n_N)$   
 $(T_A, n_A, n_N)$   $(T_A, n_A, n_N)$   
 $Enc\{n_A, n_N, n_{\mathcal{SP}_A}, T_A, T'_A, \mathcal{N}\}_{\mathcal{K}_A}$   
 $(g^y, Sign_{\mathcal{K}_N})$   
 $(n_{\mathcal{SP}_A}, MAC_{H(00||g^{xy})})$   $n_{\mathcal{SP}_A}$   
 $ok$ 

Shared: keys  $H(01||g^{xy}), H(10||g^{xy}), \text{TMSI } H(11||g^{xy})$ 

ISRS Finse '12

Towards Privacy Preserving Mobile Communications

Alice uses token  $\mathcal{T}_A$  to verify that she is a subscriber.

- To avoid tracing,  $\mathcal{SP}_A$  sends her a new token  $\mathcal{T}_A$ '.
- Still, traceable if denial of service before she receives  $\mathcal{T}_A$ '.
  - Only if she moves before connecting.
- Unconditional untraceability alternative: Public Key Crypto.
  - Too expensive to verify valid tokens Denial of service attack!

#### Authenticated & Encrypted Radio Link

- $\bullet$  Using the established keys and TMSI Alice secures the radio link with  $\mathcal{N}.$
- $\bullet \ \mathcal{N}$  sends pseudonyms to Alice for communication with others.
- Alice can have persistent connection with content service providers.
  - Initial authentication with PKC (no DoS attacks as users are tied to TMSI via pseudonym).
  - Stay connected using tokens (if new token denied, go PKC again).
  - Protection against traffic analysis.
- Can contact Bob by requesting his pseudonym from his Telephony (content) Provider.
  - Again, initially PKC and then tokens.
  - No one knows who is calling who.
  - Can encrypt their communication using a symmetric key.

What about e.g. EU's Data Retention Directive?

- Judicial MNO-SP collaboration can reveal necessary info.
- Stored info is split and therefore leaks less about users.

- Don't expect implementation mainly make a point.
- Designed to be Universally Composable Secure
  - We provide ideal functionalities for everything.
  - Proofs are quite long and complex (as the case usually is).

#### Thank You!