
Browser Security

Outline

• Crash course in HTTP and HTTPS.

• Classical security model VS browser security.

• Weaknesses and attacks on the CA infrastructure.

• Weaknesses and attacks on the SSL protocol.

• Other vulnerabilities

Most HTTPS requests start out as HTTP

• User writes “my-bank.com” in address field

• Browser re-writes to “http://my-bank.com” and
sends the request to my-bank.com

• Server responds with http redirect to
“https://my-bank.com”.

• Finally, the client and server negotiate the
SSL connection, and the request is sent over
TLS.

Crash course in HTTP

• Request sent from browser to server on port 80:

 GET /path/index.html?arg1=1 HTTP/1.1
Host: my-bank.com
user-agent: opera
Cookie: visited = 1

• Response from server:

 HTTP/1.1 301 Moved Permanently
Location: https://my-bank.com/path/index.html?arg1=1

 Client re-sends the same request over port 443 tunneled in
TLS

https://my-bank.com/path/index.html?arg1=1

Crash course in HTTPS

HTTPS://www.my-bank.com

Crash course in HTTPS

• The HTTP request is tunneled through the TLS
connection on port 443

 GET /path/index.html?arg1=1 HTTP/1.1
Host: my-bank.com
user-agent: opera
Cookie: visited = 1

• Server responds with
 HTTP/1.1 200 OK

Server: Apache

<HTML content>

” ”” ”

”Encryption device””Encryption device”

Classical PKI security model

Alice Bob
Unsecured area

Secure area

Certificate Authority

Secure area

Eve

Classical PKI security model

• The user knows what he's doing

Secure server

Browser PKI security model

Alice

Unsecured area ”Secure area”

Unsecured scripts

Browser

Server

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority Certificate

Authority
Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
Authority

Certificate
AuthorityCertificate

Authority

Certificate
Authority

Certificate
AuthorityCertificate

Authority

Evil
server

”Secure area”

Eve

Browser PKI security model

• The user does not know what encryption is.

Attacks on the CA infrastructure

Certificate infrastructure basics

Server

CA server

Browser

Revocation checking

Server
private key

CA private
key

Server
certificate

Public key
and web
address

signed by CA

CA
certificate
with public

key

How a browser verifies a server

• Browser sends a request to server www.example.com

• Server responds with a certificate containing (among others)
the public key and “www.example.com”, signed by a CA.

• The browser checks the signature using the public CA key
from the CA certificate installed in the browser.

• The browser checks that the address “www.example.com”
matches the address given in the server certificate.

• Using challenge-response techniques, the browser checks
that the server really owns the private key of the certificate.

CA and certificate problems

• Site certificates are not issued publicly

• One CA can issue certificates for any website, even if a web
page already has one.

• Inflation in numbers of Certificate Authorities

• Each CA can issue sub-CA certificates. We don't know how
many exist.

• If one single CA or sub-CA is compromised, all websites are at
risk of being compromised.

CA and certificate problems

• Any CA practically has a license to intercept any
connection, by issuing false site certificates.

• An attacker than breaks into a CA, and issues site
certificates can intercept any connection.

• Security is not better than the weakest CA

 The high security of your CA has limited impact on
your security

• Can we trust all CAs?

• Can we trust all sub-CAs?

• Do all CAs and sub-CAs have sufficient security?

CA and certificate problems

Organizational problems

• The SSL protocol did not take commercial interests and
organizational issues into account.

➔ «It's just a protocol»

• If one major browser installs a CA certificate, the others follows
due to commercial interests. No browser can afford that major
web sites break.

➔ «Race to bottom»

• CA infrastructure specification is developed by the private
organization CABForum, which is dominated by CAs and
browser vendors.

 Commercial interests, veto rights and such makes it hard to
reach «bold» decisions

What does it take to become CA in Opera?

• The Certification Authority must document a satisfactory audit
by a recognized practitioner.

 An accredited auditor that can audit according to «The
WebTrust program for Certification Authorities» or various ETSI
or ISO programs

 CAs that are operating as part of a national government may
be audited by a government auditor

• Certificates signed by the root certificates must have a
significant presence on the public Internet.

• Technical requirements of the certificate, like key lengths,
expiration dates etc.

Serious CA incident 1

• Summer 2011, the Comodo CA incident.

 Servers were compromized, false certificates were issued

 Google, gmail, facebook etc...

 Comodo reacted relatively quickly and notified relevant parties,
and fixed the issues.

 Comodo is still a browser CA.

Serious CA incident 2

• Summer 2011, Diginotar CA

 Servers were compromized, false certificates were issued.

 Google, gmail, facebook etc...

 False certificates where used to attack users in Iran

 Chrome (Googles browser) detected the attacks due to certificate
pinning of their servers.

 Diginotar tried to silently fix the problems, and did not notify
relevant parties.

 Diginotar was removed from all browsers and is now bankrupt.

Company network

• The Trustwave incident, spring 2012

 Trust wave created a device containing a sub-CA which was
allowed to issue fake site certificates on-the-fly.

 This allowed companies to monitor the network traffic of the
company's employers, even on secure TLS pages.

 If lost or misused, this man-in-the-middle device could be used
to intercept on any network connection worldwide.

 Did not loose browser CA status - Maybe they should have?

Serious CA incident 3

Man in the middle
device

A browsing
employer TLS server

Bad private key generation

• “Ron was wrong, Whit is right”

 Arjen K. Lenstra , James P. Hughes , Maxime Augier, Joppe
W. Bos , Thorsten Kleinjung , and Christophe Wachter

• They simply ran greatest common divisor (GCD) algorithm on
the public n=pq for millions of servers

• Many servers had used the same bad seed or random
number generator for the prime factors.

• 2011 was a bad year for security

• We definitely get the impression that the CA infrastructure is

failing.

Revocation of certificates

Revocation basics

At step 3, the browser contacts
the CA to check the revocation status
for given site certificate.

The certificate revocation problem

• Two parallel systems for handling revocation of site
certificates:

 Online Certificate Status Protocol (OCSP)

 Certificate Verification lists (CRL)

• Both systems have the same problems

 Connection, delay and performance problems

 Implementation problems both on servers and browser
clients

 Privacy issues

• Google chrome will simply stop using OCSP and CRL

In the Comodo and Diginotar incidents, the revocation system failed.

All browser vendors ended up creating blacklists installed in the
browsers and removing the CA.

Attempted fix: Browser CRL

• Instead of contacting the each CA, all revocation is
handled by the browser vendor.

• Can be implemented by the browser vendor
independently from CAs

 No backward compatibility issues

• Certificates can now be revoked by the browser
vendors independently from the CAs

• Revocation happens independently from browsing

• Harder for an attacker to block the revocation
requests

Attempted fix: Googles CA transparency

• Publicly trusted certificates should be public
knowledge

 All issued certificates will be published in public
logs, and it's not possible to

• Certificates are registered in number of append-only
logs, not necessarily by the CA

 The whole history of site certificates will be kept.

• Servers include a proof of registration which clients
check and can asynchronously validate

Attempted fix: Convergence

• Would remove the need of CAs

• The servers can issue their own site certificates

• The browser certificate checks with external
«notaries» which compares the certificate the browser
see with what it sees.

• The users choose which notaries to trust

• Will probably never be implemented

 Demands too much of the user

Attacks on the SSL protocol

BEAST

• Juliano Rizzo and Thai Duong 2011

• One of few attacks on a TLS encryption algorithms.

• It shows the weaknesses of using classical security model on
browsers.

Chosen plaintext attack

Alice
Bob Secure

server

Eve server

Preconditions for successful attack

• The attacker must be able to eavesdrop on network
connections made from the victim's browser.

• The attack must be able to insert JavaScript into the victim's
browser.

• The attacker must be able to send HTTPS requests at will.

• After listening in on the request, the attack must be able to
append more data to the very same request.

• Attacks CBC mode, where the IV for next encryption is the
result of the previous encryption.

• The victim must be logged in to a secure web page,
authenticated with a cookie.

• The victim must simultaneously load an 'evil' page.

• The 'evil' page issues requests to the secure web page

 Chosen plaintext attack

• The goal of the attack is to reveal the secret session cookie.

Beast details

POST /a...aaaa/index.html HTTP/1.1
Host: min-bank.no
Cookie: 12ehasaf3rfa

<POST data>

C
2
 is known due to

wiretapping

CBC mode attack

Missing the point...

• Taher Elgamal, One of the designers of SSL and
inventor of the ElGamal discrete log cryptosystem:

”Now, from a practical standpoint, the real

problem is you have to have malware on the
machine. Honestly, if I can put malware on your
machine, I'm not going to be bothering with your
SSL because I can see all the data before it gets
encrypted.

Defense against the Beast

• Upgrade to TLS 1.1/1.2

 TLS 1.1/1.2 uses random IV for each encrypted record.

 Not yet realistic. Few servers support TLS 1.1/1.2.

• Fix SSL 3.0/TLS 1.0 client side

 Simulate TLS 1.1/1.2 by splitting each n-byte SSL record i into
records of length 1 and n-1 bytes.

 The splitting 'ruins' the known C
0
.

 This will result in a few but acceptable compatibility problems

Is Beast practical?

• By default Opera was not vulnerable

 Same origin policies, and vulnerable websocket protocol is off
by default.

 It's hard add more known plaintext data on same connection

• Juliano Rizzo and Thai Duong demonstrated the attack using
java plugin.

 Java is fixed and now has working same origin policy.

TLS renegotiation attack

• Plaintext injection attack.

• Uses a vulnerability in the TLS renegotiation logic.

TLS renegotiation attack

Alice ServerEve

TLS handshake

Initial traffic

TLS handshake

Triggers
renegotiation

The vulnerability is caused by a missing association between
initial connection and renegotiated connection.

How the attack works

• Eve sends

 GET /pizza?address=attackersaddress HTTP/1.1
X-Ignore:

• Alice sends

 GET /pizza?address=victimssaddress HTTP/1.1

 Cookie: victimscookie

• Eve grabs the encrypted data from victim and sends it to the
server through the existing connection.

• The server decrypt the Eves request, perform renegotiation with
Alice (who does not notice) and decrypts Alice’s request:

 GET /pizza?address=attackersaddress HTTP/1.1
X-Ignore: GET /pizza?address=victimssaddress HTTP/1.1
Cookie: victimscookie

Defense against renegotiation attack

• The server can turn off renegotiation support

• Server and client may support an SSL extension with random
data. The renegotiation connection must know this secret.

• No browser enforces this extension yet.

 Too many servers will fail.

HTTPS stripping attack

• Attack on the initial HTTP request.

 A man in the middle can simply grab the HTTP request,
and make sure the connection is never upgraded to
HTTPS.

 The attacker then opens up HTTPS connection to the
secure server, and servers it as HTTP to the browser
client.

• The attack is crude, and the user will not see the padlock icon.

 However, since no warning is showed, this kind of
attack is surprisingly successful.

Secure serverMITMBrowser
HTTP HTTPS

HTTP Strict Transport Security (HSTS)

• Measure to prevent HTTPS stripping attack

• On first HTTPS request, a HSTS server will respond with a
HSTS header.

• From that point on, the browser will never connect to the server
using HTTP

 All HTTP requests will be rewritten to HTST internally in the
browser

• The browser is still vulnerable on the first connect to a new
server.

Why is not TLS 1.1 and 1.2 used?

• Chicken and egg problem

• Browsers support TLS 1.1/1.2, but have turned it off by default
due to bad server TLS implementations.

 Old/bad TLS clients tends to accept any TLS version, thus
negotiating a version they do not support.

• Servers do not support TLS 1.1/1.2 since browsers have
turned it off.

Other security issues

Cross Site Request Forgery (XSRF)

• Assume a user Alice has two open tabs:

 Bob's good page https://www.bob.com

 Eve's evil page www.evil-evel.com

• Alice is logged into Bob's server and authentication mechanism is
sessions cookies.

• Eve's web page can now issue https requests from Alices
browser to Bob's server

 The browser will automatically attach the session cookie to
the forged request

• Example: http://www.bob.com/delete_all

• Defense: add secret URL argument in addition to session cookie.

 https://www.bob.com/?secret_arg=adfsfbrgseg

Cross site scripting (XSS)

• Alice is connected to social website, and views content
posted by others.

• Eve sends <script> “evil script” </script> to the website.

• Server does not properly sanitize the post from Eve

• Alice views Eve's post and loads the script

• The script now has access to content on Alice's web page

Social website Server

Alice

Eve

Fingerprinting

• A browser reveals quite a bit information about the user's
system

 Screen size,

 timezone,

 which plugins does the browser support,

 which fonts are installed

 Which features are on

 Browser vendor and version

• https://panopticlick.eff.org/

 My browser on this computer revealed 21.5 bits of identifying
information

https://panopticlick.eff.org/

Double click attack

• Users often double click on web page links, since that is what
they are used to do in the operating system

• An web page can create a download or install link, and
carefully make the web page such that the “INSTALL” button
for installing appears at the same spot as the link

• This is fixed by delaying the appearance of the install button.

Buffer overflows

• Can give full access to install malware on user's computer.

Attack on plugins

• Java

• Flash

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

