Cryptography and murder The Zodiac killer

Håvard Raddum
Selmersenteret
University of Bergen

Beginning of the story

\square Tor got an email
\square Someone wanted help with a cipher
\square Could the plaintext be in Norwegian?
\square Decided to have a look at it

The Zodiac killer case

\square Serial killer active in the San Fransisco area in the years 1967 - 1974 (at least)
\square Linked to 7 murders, but claimed many more
\square Never caught
[Police investigation closed in 2004
\square Lots of theories and speculations around the case

This is the Zodiac speaking...

Wrote many letters (at least 18) to the police and to newspapers in the SF area

Ciphers

\square Four letters contained ciphers
\square Appear to be substitution ciphers, but with more ciphertext symbols than ordinary letters
\square Two of them contain too little ciphertext to be solved This is the Zodiac speaking

$$
\begin{aligned}
& \text { By the way have you cracking } \\
& \text { the last cipher I sent you? } \\
& \text { My name is }
\end{aligned}
$$

$$
A E N \notin O \otimes M \otimes \perp N A M
$$

Al Moe Fe norman ?

408 cipher

\square First cipher the Zodiac sent
\square Was divided in three parts and sent to three different newspapers

All three parts published on the front pages

Solved in a week by a high school teacher and and his wife

How did they do it?

\square Knew the killer had a big ego, assumed he would start with 'I'
\square Assumed the word 'kill' would appear several times

This was 1969 - only pencil and paper!

数

W。

v＋路 म 둠 승 の $\boldsymbol{\lambda} \boldsymbol{\lambda}$

 0×10
0×0
0 $\stackrel{+}{\circ}$㓱
幾

Observations

\square One symbol = one letter

- More symbols than letters => one letter may be represented by several symbols
\square Simple frequency analysis will not work
$\square 53$ symbols used, each one appearing $408 / 53=7.7$ times on the average

Order of symbols

Cycle structure

\square Symbols representing the same letter used in order
\square Makes sure symbols are used equally often

B However, system messed up a bit

340 cipher

\square Sent to the San Francisco Chronicle in Nov. 1969

$$
\begin{aligned}
& B \times \pi \geq M+u \geq G W \phi-L \square-H J
\end{aligned}
$$

$$
\begin{aligned}
& \text { 口 } \Delta M+-1+\tau 01-F P+P 0 \times 1
\end{aligned}
$$

$$
\begin{aligned}
& 0<M+8+Z R O F B>\times A O O K \\
& -\downarrow u V+\Lambda J+09 \Delta<F B \times- \\
& U+R / O \perp E 1 D+B 98 T M K O
\end{aligned}
$$

$$
\begin{aligned}
& R \supset T+L O C C<+F \perp W B 1-L \\
& ++\theta W C<\omega>P O \text { SHT/d-9 }
\end{aligned}
$$

$$
\begin{aligned}
& >M D H N 9 \lambda S \rightarrow 20 \Delta A 1 K_{\text {www.zodiackiller.com }}
\end{aligned}
$$

Initial observations

- Appears to be same kind of cipher as the 408

E Each line contains 17 symbols, as in the 408
\square Contains 63 symbols, each appearing $340 / 63=5.4$ times each on the average

Frequency analysis

```
**** -4
2: ***-3
3: ********-8
4: ****-4
5: *********** - 11
6: ******* - 7
7: ******-6
8: ****** -6
9: *** - 3
10: ***** - 5
11: ********** - 10
12: ** -2
13: ****** -6
14: *****-5 7.7\%-T,A,O,I,N,S?
15: ******-6
16: ********** - 10
17: ***** 5
18: *****-5
19: \(* * * * * * * * * * * * * * * * * * * * * * * *-24\)
20: ************ - 12
21: ******* - 7
```

	22: *****-5
	23: ********** 10
	24: ** - 2
	25: ****-4
	26: ****** 6
	27: ****-4
	28: ****** -6
	29: ****** - 6
	30: ****** - 6
	31: *******-7
	32: ****-4
	33: *****-5
	34: *****-5
	35: ** - 2
	36: ********* - 9
	37: *******-7
	38: ***** - 5
	39: ****-4
	40: ********* - 9
	41: ****-4
	42: ****-4

```
43: *** - 3
44:**** - 4
45:** - 2
46:*** - 3
47:**** - 4
48:** - 2
49:****-4
50:** - 2
51: *********** - 11
52:*********** - }1
53: *** - 3
54: *** - 3
55: ***** - 5
56:****** - 6
57:** - 2
58: ** - 2
59: ***-3
60:** - 2
61: *-1
62: ***-3
63:** - 2
```


Same method as the 408?

\square Maybe symbols representing the same letter appear in cyclic order?

Knowing which symbols represent the same letter makes cipher vulnerable to frequency analysis
\square Assume cycle system used, identify different symbols representing the same letter

2-cycles

\square Try all pairs of symbols and see which ones appear in alternating pattern (2-cycle)
\square Number of 2 -cycles in the 340 cipher is 90

- Most of them consist of symbols only appearing a few times

Exceptions:
($\boldsymbol{\wedge}, \boldsymbol{\square})-6$ times each
(\lrcorner, M) - 7 times each

^ and a same letter?

- 9 symbols appear 6 times each, what is the probability that two of them form a 2-cycle?
\square Given two of the symbols, probability they appear in alternating pattern:
$\frac{\# \text { of alt. patterns }}{\# \text { of pos. patterns }}=\frac{2}{\frac{12!}{(6!)(6!)}}=\frac{1}{66}$
$\square \operatorname{Pr}($ at least one 2 -cycle $)=1-(65 / 66)^{\left[\begin{array}{l}9\end{array}\right]} \approx 0.423$
\square Can not conclude anything

\lrcorner and m same letter?

$\square 4$ symbols appear 7 times each
\square Given two of the symbols, probability they appear in alternating pattern:

$$
\frac{2}{\frac{14!}{(7!)(7!)}}=\frac{1}{1716}
$$

$\square \operatorname{Pr}($ at least one 2 -cycle $)=1-(1715 / 1716)^{\left[\begin{array}{l}4 \\ 2\end{array}\right]} \approx 0.0035$
\square Good basis for guessing $\lrcorner=m$ in the 340 cipher

n-cycles

\square May find all n-cycles $(\mathrm{n}>2)$ by trying all $\left[\begin{array}{c}63 \\ n\end{array}\right]$ possibilities
\square Better way, use following result :

\square Example: $(1,5),(1,13)$ and $(5,13)$ are 2 -cycles
$(1,5,13)$ is a 3 -cycle

Overview of n-cycles

\square Knowing all 2-cycles, may use result to recursively produce all n-cycles, $\mathrm{n}>2$
\square

n	$\#$ of n-cycles
2	90
3	62
4	14
5	2

\square Using this to identify symbols representing same letter $=>$ too many letters (45)

Are we on the right track?

Questions: $\left\{\begin{array}{l}\text { Maybe cipher shold be read columnwise? } \\ \text { Has the cycle system been used at all? }\end{array}\right.$

- If cycle system used, we should see more cycles than what to expect in a random symbol sequence
- Generated 10.000 random sequences from the set of symbols found in 340 cipher, counted the number of n -cycles in them

Result

	al 340 cipher
n	\# of n-cycles
2	90
3	62
4	14
5	2

10.000 random seq.

n		min	avg	max
2	8	34.9	79	0
3	0	16.0	102	46
4	0	4.2	113	713
5	0	0.6	79	626

Transposed cipher:

n	$\#$ of n-cycles
2	35
3	10
4	1
5	0

Findings (?)

Strong bias in number of n -cycles, $\mathrm{n}=2,3$
Evidence that cycle system has been used

No bias when reading columnwise
Cipher to be read linewise
\square Analysis that allows for small deviations in cycle system needed

