Bart Preneel

Context

DES, RSA, DH, CBC-MAC Provable security (PKC), ZK, ElGamal, ECC, stream ciphers MD4, MD5 Provable security (SKC) Key escrow How to use RSA? Alternatives to RSA PKI

AES ID-Based Crypto

HARDWARE
Limited (govt+financial sector)
DES, 3DES70
80SOFTWARE
GSM, PGP
C libraries (RSA, DH)
SSL/TLS, IPsec, SSH, S/MIME
Java crypto libraries
WLAN90EVERYWHERE
Trusted computing, DRM,
3GPP, RFID, sensor nodes91

RFC 3268: AES Ciphersuites for TLS (06/'02)				
CipherSuite	Key Exchange	Certificate Type		
TLS_RSA_WITH_AES_128_CBC_SHA	RSA	RSA		
TLS_DH_DSS_WITH_AES_128_CBC_SHA	DH_DSS	DSS		
TLS_DH_RSA_WITH_AES_128_CBC_SHA	DH_RSA	RSA		
TLS_DHE_DSS_WITH_AES_128_CBC_SHA	DHE_DSS	DSS		
TLS_DHE_RSA_WITH_AES_128_CBC_SHA	DHE_RSA	RSA		
TLS_DH_anon_WITH_AES_128_CBC_SHA	DH_anon			
TLS_RSA_WITH_AES_256_CBC_SHA	RSA	RSA		
TLS_DH_DSS_WITH_AES_256_CBC_SHA	DH_DSS	DSS		
TLS_DH_RSA_WITH_AES_256_CBC_SHA	DH_RSA	RSA		
TLS_DHE_DSS_WITH_AES_256_CBC_SHA	DHE_DSS	DSS		
TLS_DHE_RSA_WITH_AES_256_CBC_SHA	DHE_RSA	RSA		
TLS_DH_anon_WITH_AES_256_CBC_SHA	DH_anon			
ersion 1.2: reduce dependency on MD5,	/SHA-1, AE	S mandatory		

IKE Algorithm Selection Mandatory Algorithms			
Algorithm Type	IKE v1	IKE v2	
Payload Encryption	DES-CBC	3DES _CBC (AES_128_CBC	
Payload Integrity	HMAC-MD5 HMAC-SHA1	HMAC-SHA1	
DH Group	768 Bit	1024 (2048) Bit	
Transfer Type 1 (Encryption)	ENCR_DES_CBC	ENCR_3DES (ENCR_AES_128_CBC)	
Transfer Type 2 (PRF)	PRF_HMAC_SHA1 [RFC2104]	PRF_HMAC_SHA1 [RFC2104]	
Transfer Type 3 (Integrity)	AUTH_HMAC_SHA1_96 [RFC2404]	AUTH_HMAC_SHA1_96 [RFC2404]	

Disclaimer: cryptography ≠ security

- crypto is only a tiny piece of the security puzzle
 but an important one
- · most systems break elsewhere
 - incorrect requirements or specifications
 - implementation errors
 - application level
 - social engineering
- for intelligence, traffic analysis (SIGINT) is often much more important than cryptanalysis

Outline

- · Complexity
- Evaluation
- · Human factor
- · Privacy and autonomy
- Economics
- Cryptology
- [Adi Shamir] We are winning yesterday's information security battles, but we are losing the war. Security gets worse by a factor of 2 every year
- [Andrew Odlyzko] Humans can live with insecure systems. We couldn't live with secure ones.

Complexity

- · Billions of devices
- · EMV specifications: thousands of pages
- O/S: 50-100 millions of lines of code
- Virtual machines
- Middleware
- Application software
- Smart cards: used to be simple ©
- TPM: 125 commands and hundreds of pages of specifications

Have we learned how to manage complexity? Or is it just impossible to build large secure systems?

Evaluation

- Conformance testing
- Security evaluation: FIPS and CC

 a step forward but are we stuck with this approach for the next 20 years?
- · How to check a hardware random number generator?
- Is protection profile correct?
- · What about new threats and attacks?
- What about upgrades?
- How open is the procedure?
- Evaluators have incentive for product to pass
- Is every lab reliable? (mutual recognition)

Research on security evaluation?

Privacy breaches

- Lost control of sensitive data concerning millions of victims in total:
 - b payroll handler PayMaxx, Bank of America, San Jose Medical Group, California State University at Chico, Boston College, University of California at Berkeley, and a large shoe retailer called DSW, ChoicePoint, LexisNexis
- US Citizens: complaints received by FTC for identity theft/fraud in general
 - 2005: 255,000/431,000
 - 2007: 246,000/674,000
 - total numbers are claimed to be 10 million +
- UK (Nov 2007): 25 million records lost on a CD in the mail

Privacy and technology

PET: Privacy Enhancing

Technologies • proxies

pseudonyms

cryptology

credentials

• mixes

- search engines
- XML
- biometry
- location (GSM, GPS)
- printers
- DRM
- spyware and cookies
- huge databases
- data mining
- video cameras
- RFID

The privacy debate

- user: convenience and improved service
- businesses:
- protect company assets (email, DRM)
- price discriminationlaw enforcement:
- fraud, theft, stalking, counterfeiting
- national security
- privacy is essential for a democracy
- legislation
- technology
- technology
- G

- Human models for risk assessment are inherently wrong: we tend to overestimate
 - Large catastropic events versus real risks
 - Unknown risks
 - Risks to our children

- HW: most compact: 3600 gates
- HW: fastest up to 43 Gbit/s in 130nm CMOS

security

- No attack has been found that can exploit this structure (in spite of earlier claims)
- main threat is implementation level attack (cache timing, fault attacks): requires special countermeasures

Block ciphers: Keeloq (2)

- · Leaked on the internet in 2006
- [Bogdanov07] in some cases car key = Master key + Car ID
- [Bogdanov07], [Courtois-Bard-Wagner07] first cryptanalysis
- [Biham-Dunkelman-Indesteeghe-Keller-Preneel07]:
 1 hour access to token (2¹⁶ known texts)
 - 2 days of calculation on 50 PCs (10.000\$) 2^{44.5} encryptions
- [Eisenbarth-Kasper-Moradi-Paar-Salmasizadeh-Manzuri ShalmaniPaar 08]
 - Side channel attack allows to recover master key

in 2010 cryptographers will drive expensive cars

Open competition for stream ciphers http://www.ecrypt.eu.org

- run by ECRYPT
 - high performance in software (32/64-bit): 128-bit key
 - low-gate count hardware (< 1000 gates): 80-bit key</p>
 - variants: authenticated encryption
- 29 April 2005: 33 submissions
- Many broken in first year
- End of competition: April 2008

Open competition: Feb. 2007 status

SW Phase 3	HW Phase 3
CryptMT	DECIM
DRAGON	Edon-80
HC-128 (-256)	F-FCSR
LEX	Grain
NLS (encrypt only)	MICKEY (-128)
Rabbit	MOUSTIQUE
Salsa20	POMARANCH
SOSEMANUK	Trivium
3-10 cycles	15003000

The eSTREAM Portfolio April 2008

Software	Hardware	
HC-128	F-FCSR-H	
Rabbit	Grain v1	
Salsa20/12	MICKEY v2	
Sosemanuk	Trivium	

(In alphabetical order)

Lightweight crypto SQUASH [Shamir07] – Crypto rump session – MAC algorithm for authentication in RFID chips – only 500 gates security is related to modular squaring (Rabin cryptosystem) PRESENT [Bogdanov07] – CHES 2007 – 64-bit block cipher for RFID chips

- only 1750 gates (compare to 3600 for AES)

Stream cipher: because of time-memory trade-offs, for 80-bit security one needs 160 bits memory which costs 1000 gates

Key lengths for confidentiality **Factorisation** http://www.ecrypt.eu.org · New record in May 2005: 663 bits (or 200 digits) using NFS duration symmetric New record in May 2007: 21039-1 (313 digits) using SNFS • days/hours 50 hardware factoring machine: TWIRL [TS'03] (The Weizmann Institute Relation Locator) 5 years 73 initial R&D cost of ~\$20M 512-bit RSA keys can be factored with a device costing \$5K in about 10 minutes 10-20 years 103 1024-bit RSA keys can be factored with a device costing \$10M in about 6 weeks 30-50 years 141 ECRYPT statement on key lengths and parameters http://www.ecrypt.eu.org

768-bit factorization in 2008 and 896-bit factorization in 2010

1024 146 2048 206 4096 282

RSA

512

ECC

100

Assumptions: no quantum computers; no breakthroughs; limited budget

New computational models: quantum computers?

• exponential parallelism n coupled quantum bits

 2^n degrees of freedom !

- Shor 1994: perfect for factoring
- But: can a quantum computer be built?

If a large quantum computer can be built...

- All schemes based on factoring (such as RSA) will be insecure
- Same for discrete log (ECC)
- Symmetric key sizes: x2
- Hash sizes: x1.5
- Alternatives: McEliece, HFE, NTRU,...
- So far it seems very hard to match performance of current systems while keeping the security level against conventional attacks

News on 13 Sept. 2007

- "Two independent teams (led by Andrew White at the University of Queensland in Brisbane, Australia, and the other by Chao-Yang Lu of the University of Science and Technology of China, in Hefei) have implemented Shor's algorithm using rudimentary laser-based quantum computers"
- Both teams have managed to factor 15, again using special properties of the number

Challenges for advanced crypto

- privacy enhancing technologies
- linking crypto with physical world

 biometrics, physically uncloneable functions
- distributed secure execution
- whitebox cryptography
- cryptography in the encrypted domain
- searching in encrypted databases data mining on health care date
- zero knowledge watermarking intelligent media sharing
- · perceptual hashing
- crypto for nanotechnology

Conclusions

- The "security problem" is not solved – Many challenging problems ahead...
 - Make sure that you can upgrade your crypto algorithm and protocol
 - Bring advanced cryptographic protocols to implementations

When will the IACR hold its elections on-line?

When will everyone pay with e-cash?

Can we reconcile privacy, DRM and data mining?

