
MAC Algorithms:

State of the Art and Recent Developments

Prof. Bart Preneel

Katholieke Universiteit Leuven bartDOTpreneel(AT)esatDOTkuleuvenDOTbe

http://homes.esat.kuleuven.be/∼preneel

April 2008

MAC Algorithms: overview

1. definition

2. applications

3. attacks

4. constructions

• based on block ciphers

• based on hash functions

• dedicated MACs

• based on authentication codes/universal hash functions

2

MAC = hash function with secret key

.. -

.. - = ?239215682364

Where dips the rocky
highland of Sleuth Wood
in the lake, There lies
a leafy island where
flapping herons wake
the drowsy water-rats;
there we’ve hid our
faery vats, full of berries
and of reddest stolen
cherries. Come away, o
human child! To the

?
@

@
@@

�
�

��

-

K
?

MAC

239215682364

Where dips the rocky
highland of Sleuth Wood
in the lake, There lies
a leafy island where
flapping herons wake
the drowsy water-rats;
there we’ve hid our
faery vats, full of berries
and of reddest stolen
cherries. Come away, o
human child! To the

?
@

@
@@

�
�

��

-

K
?

MAC

239215682364

3

MAC: definition (1)

Message Authentication Code

= hash function with secret key:

1. description of h public

2. X arbitrary length ⇒ fixed length m (32 . . .160 bits)

3. computation of hK(X) “easy” given X and K

4. computation of hK(X) “hard” given only X, even if a large number

of pairs {Xi, hK(Xi)} is known

calculation of hK(X) without knowledge of secret key:

forgery

• verifiable or not verifiable

• selective or existential

4

MAC: definition (2)

A MAC is secure if, for an adversary who does not know K, it is

computationally infeasible to perform an existential forgery under an

adaptive chosen text attack.

A MAC is (ǫ, t, q, q′, L) secure if, an adversary who does not know K,

and

• can spend time t (operations),

• can obtain the MAC for q texts of this choice,

• can observe the MAC for q′ texts (not of his choice),

• and can obtain the result of q′′ verification queries on text-MAC

pairs of his choice.

(each message of length L),

cannot produce an existential forgery with probability of success larger

than ǫ.

5

Applications

MAC versus digital signature:

– non-repudiation

– key management

+ performance/computational effort

+ size of MAC and of keys

• banking

• Internet security: IP security

• electronic purses + authorization for credit cards

6

Attack: exhaustive key search

try all values of the key K

• #X, hK(X) pairs ≈ k/m

• # attempts ≈ 2k−1

• a recovered key is only valuable within its lifetime

• but allows for arbitrary forgery

long term security: 75. . . 90 bits

Attack complexity: [2k, k/m,0,0]

or [22k/3,0, k/m,0] with 2k offline work

notation

work – known texts – chosen texts – on-line verifications

7

‘Attack’: guess MAC

success probability max(1/2m,1/2k)

but:

• not verifiable

• requires on-line verification

depending on application: m, k ≥ 32. . . 64

Attack complexity: [0,0,0,min(2m,2k)]

8

Attack: birthday forgery attack (1)

@
@

@@ �
�

��
? ?

H0 = IV x1

f
@

@
@@ �

�
��

? ?

H1 x2

f
@

@
@@ �

�
��

? ?

H2 x3

f

H3
?

g

?

hK(x)

f compression function

g output transformation

unambiguous padding of input to multiple of block length

divide input into blocks x1, x2,, . . . , xt

9

Birthday forgery attack (2)

find (x, x′): h(x) = g(Ht) = h(x′) = g(H ′
t)

internal collision: Ht = H ′
t

external collision: Ht 6= H ′
t but g(Ht) = g(H ′

t)

note: if g is bijective, there are no external collisions

Lemma 1 An internal collision for an iterated MAC can be used for

a forgery which requires only a single chosen text.

indeed: hK(x ‖ y) = hK(x′ ‖ y)

and thus one can predict the 2nd MAC without knowing K

note: this does NOT work for an external collision.

10

Attack: birthday forgery attack (2b)

@
@

@@ �
�

��
? ?

H0 = IV x1

x′1

f
@

@
@@ �

�
��

? ?

H1 x2

x′2

f
@

@
@@ �

�
��

? ?

H2 x3

x′3

f

H3
?

g

?

hK(x)

f compression function

g output transformation

@
@

@@ �
�

��
? ?

H3 y

f

?

g

?

hK(x||y)

unambiguous padding of input to multiple of block length

divide input into blocks x1, x2,, . . . , xt

11

Birthday forgery attack (3)

• internal memory (Hi): n bits

• MAC value: m bits

[Preneel-van Oorschot] forgery: [0,2n/2,≤ 2n−m,0]:

• internal collision after 2n/2 text-MAC pairs

(by the birthday paradox)

• # external collisions is equal to (2n/2)2/2m+1 = 2n−m−1

(or 0 if g is a permutation)

• distinguish internal/external by simulating the attack of lemma 1

(fails with high probability for external collisions only; 2 chosen

texts per collision)

small improvement: [0,2n/2,min(2n/2,2n−m),0]

12

Birthday paradox

Given a set with S elements.

Choose r elements at random (with replacements), with r ≪ S.

Find probability p that there at least two identical elements.

q = 1 − p = 1 · S − 1

S
· S − 2

S
· · · S − (r − 1)

S
=

r−1
∏

k=1

(

1 − k

S

)

ln q =
r−1
∑

k=1

ln

(

1 − k

S

)

≈ −
r−1
∑

k=1

k

S
= −r(r − 1)

2S

p = 1 − exp

(

−r(r − 1)

2S

)

if r =
√

S : p = 39%

birthday paradox: for S = 365 and r = 23, p = 1/2

intuition: number of pairs of elements is r(r − 1)/2.

13

Birthday forgery attack (4)

Let h be an iterated MAC with n-bit chaining variable and m-bit re-

sult.

An internal collision for h can be found with

√
2 · 2n/2 known texts

v chosen texts.

v = 0 if g is a permutation;

v = min

(

2n/2,2

(

2n−m
(

1 − 1

e

)

+

⌊

n − 1

m − 1

⌋))

otherwise.

14

Birthday forgery attack (5)

Let h be an iterated MAC with n-bit chaining variable, m-bit result,

a compression function f which behaves like a random function (for

fixed xi), and output transformation g.

An internal collision for h can be found using u known text-MAC pairs,

where each text has the same substring of s ≥ 0 trailing blocks, and

v chosen texts.

u =
√

2/(s + 1) · 2n/2

v = 0 if the output transformation g is a permutation or if s+1 ≥
2n−m+6

v = 2

(

2n−m

s + 1
·
(

1 − 1

e

)

+

⌊

n − 1 − log2(s + 1)

m − 1

⌋)

,

15

Birthday forgery attack (6)

practical?

• not all environments allow for chosen texts

• optimization reduces number of known texts

• extension to key recovery is more dangerous

how to preclude? see later

16

MAC algorithms based on a block cipher

ISO 9797-1 (2001)

• 6 variants of CBC-MAC

• 3 padding schemes

– padd with zeroes

– padd with 1 (always) followed by zeroes

– prepend length in bits and padd with zeroes

Other schemes

XOR MAC

PMAC

3GPP-MAC

XCBC

17

CBC-MAC: Algorithm 1 (1)

E�
�

K1
-

?

x1
H1

E�
�

K1
-

h+
?

?

-

x2
H2 ...

E�
�

K1
-

h+
?

?

?

-

xt

G

hK1
(x)

Ht−1

• ANSI 1982, FIPS 1985, ISO 1987, ISO/IEC 1989

• proof of security for fixed length inputs by [Bellare-Kilian-Rogaway’94]

• m = 32 . . .64 bits

18

CBC-MAC: Algorithm 1 (2)

security with DES:

• key search: [256,2,0,0]

• key recovery using lc: [243,243,0,0]

• guess MAC: [0,0,0,min(256,2m)]

• birthday forgery attack (even if triple-DES):

– m = 64: [0,232,1,0]

– m = 32: [0,232,233,0]

• trivial forgery for m = 64 if no special operation for last block

• improved attack for m = 32: [0,2,216,0] [Knudsen97]

much smaller than expected!

19

Why a special operation for the last block?

x consists of a single block

• MACK(x) is known

• then MACK(x‖(x ⊕ MACK(x))) = MACK(x).

x, x′ consist of a single block

• MACK(x) and MACK(x′) are known

• MACK(x‖(x′ ⊕ MACK(x))) = MACK(x′).

x, x′, and Y fall on block boundaries

• MACK(x), MACK(x‖Y), and MACK(x′) are known

• MACK(x′‖Y ′) = MACK(x‖Y)

if Y ′ = Y ⊕ MACK(x) ⊕ MACK(x′).

20

Knudsen’s attack for m < n (1)

probabilistic variant of the attack

• 2 known texts: MACK(x) = αm and MACK(x′) = α′
m

• output of last encryption = αm‖βn−m and α′
m‖β′

n−m,

with α, α′ known and β, β′ unknown.

• chosen texts: r pairs of the following form:

x‖αm‖γn−m and x′‖α′
m‖γ′

n−m.

• input block for the last encryption (G) is of the form 0m‖(β⊕γ)n−m

and 0m‖(β′ ⊕ γ′)n−m

21

Knudsen’s attack for m < n (2)

• if for a pair β ⊕ γ = β′ ⊕ γ′, the two MACs for that pair will be

equal; this is easy to detect.

• this happens with probability 0.63 if r =
√

2n−m

• based on the collision, we can compute β ⊕ β′ := γ ⊕ γ’

• this leads to a forgery as follows:

MACK(x‖Y) = MACK(x′‖(Y ⊕ (∆αm‖∆βn−m))

with ∆α = α ⊕ α′ and ∆β = β ⊕ β′.

2 known texts, 2 · 2(n−m)/2 + 1 chosen texts

22

CBC-MAC: Algorithm 2 (1)

RIPEMD-MAC [RIPE’93] + EMAC (DMAC) [Petrank-Rackoff’98]

E��
K1

-

?

?

x1
H1

E��
K1

-

m+
?

?

-

x2
H2 ...

E��
K1

-

m+
?

?

?

-

xt

Ht

Ht−1

E��
K2

-

?

hK(x)

23

CBC-MAC: Algorithm 2 (2)

security with DES:

• key search: [256,2,0,0]

• guess MAC: [0,0,0,min(256,2m)]

• birthday forgery attack (even if triple-DES):

– m = 64: [0,232,1,0]

– m = 32: [0,232,233,0]

much smaller than expected!

24

CBC-MAC: Algorithm 3 (retail MAC) (1)

E��
K1

-

?

x1
H1

E��
K1

-

g+
?

?

-

x2
H2 ...

E��
K1

-

g+
?

?

?

-

xt

G

Ht = G′

Ht−1

D��
K2

-

?
G′′

E��
K1

-

?

hK(x)

25

CBC-MAC: Algorithm 3 (retail MAC) (2)

security with DES and m = 64:

• key search: [2112,2,0,0]

• guess MAC: [0,0,0,min(2112,2m)]

• birthday forgery attack: [0,232,1,0] (or [0,232,233,0])

• improved key recovery [Preneel-van Oorschot-Knudsen]

– [3 · 256,232,0,0]

– [3 · 256,1,0,256]

solution: triple-DES in first and last round?

26

Key recovery attack on retail MAC (1)

• collect 232 known text-MAC pairs (e.g., of 2 blocks)

• with probability 0.39 there is a collision (x, x′)

• find the keys K1 for which the input to the last triple encryption

(G) is the same for x and x′

– with high probability, there will be only 1 solution

– work factor: 2 · 256 encryptions

• use K1 to compute G′ and G′′

• find the key K2: 256 encryptions

232.5 known texts and 3 · 256 encryptions

27

Key recovery attack on retail MAC (2)

• one known text α = MACK(x), say of 2 blocks x1, x2

• guess K1

– compute the value of G (input of the last triple encryption)

– choose x′1 6= x1 and x′2 such that the same value for G is

obtained, or x′2 = EK1
(x′1) ⊕ G

– ask a MAC verification device: MACK(x′1‖x′2) = α?

– if yes, the guess for K1 was right (with high probability)

• use K1 to compute G′ and G′′

• find the key K2: 256 encryptions

1 known text, 3 · 256 encryptions and 256 MAC verifications

28

CBC-MAC: Algorithm 4 (Mac-DES) (1)

[Knudsen-Preneel’98]

E��
K1

-

?

?

x1

E��
K2

-

H1

E��
K1

-

�
��
+

?

?

-

x2
H2 ...

E��
K1

-

�
��
+

?

?

?

-

xt

Ht

Ht−1

E��
K ′

2
-

?

hK(x)

29

CBC-MAC: Algorithm 4 (Mac-DES) (2)

security with DES and m = 64:

• key search: [2112,2,0,0]

• guess MAC: [0,0,0,min(2112,2m)]

• birthday forgery attack:

[0,232,1,0], for m = 32: [0,232,233,0]

• improved key recovery [Coppersmith-Mitchell-Knudsen00]:

[259,233,3 · 249,0], for m = 32: [264,0,263,257]

stronger against key recovery than MAC Algorithm 3

30

XOR MAC

[Bellare-Guérin-Rogaway’95]

1||N

?

EK

?

c0

0|| <1> ||p1

?

EK

?

c1

0|| <2> || p2

?

EK

?

c2

0|| <t> || pt

?

EK

?

ct

Σ, N with Σ = c0 ⊕ c1 ⊕ c2 ⊕ · · · ct

• stronger security reduction than CBC-MAC (linear decrease of

security with number of blocks)

• incremental and parallelizable

• twice as slow as CBC-MAC (for 32-bit length field)

• MAC twice as long

31

OCB mode and PMAC (1)

[Rogaway-Bellare-Black-Krovetz 01]

• authenticated encryption: indistinguishability under chosen plain-

text attack and authenticity of ciphertexts

• randomized encryption using a nonce N : nonce can be used only

once but does not need to be unpredictable

• one block cipher key (but 3 keys)

• any input length: no need for multiple of block length

• fully parallel, preprocessing possible

• minimal ciphertext expansion: MAC and nonce

• only two extra block cipher calls

PMAC: variant with only MAC

optimization: [Rogaway04] (Asiacrypt 2004)

32

OCB mode and PMAC (2)

N

?h+�L

?

EK

?

R

p1

?h+�Z1

?

EK

?h+�Z1

?
c1

p2

?h+�Z2

?

EK

?h+�Z2

?
c2

pt−1

?h+�Zt−1

?

EK

?h+�Zt−1

?
ct−1

pt - len
?h+�L · x−1
?h+�Zt

?

EK
?

Yt

�h+

?
ct

Σ

?h+�Zt

?

EK

?
first m bits

?
MAC

Σ := p1 ⊕ . . . ⊕ pt−1 ⊕ ct||0∗ ⊕ Yt

MAC := first bits of EK(Σ ⊕ Zt)

security bound: O

(

q′2
2n + 1

2m

)

with q′ total number of blocks

33

OCB mode and PMAC (3)

input: p1...pt−1 pt (pt can be incomplete)

1. L := EK(0n) and R := EK(N ⊕ L)

2. for i := 1 to t do Zi := Li ⊕ R

3. for i := 1 to t − 1 do ci := EK(pi ⊕ Zi) ⊕ Zi

4. Yt := EK(len(pt) ⊕ L−1 ⊕ Zt)

5. ct := Yt ⊕ pt

6. Σ := p1 ⊕ . . . ⊕ pt−1 ⊕ ct||0∗ ⊕ Yt

7. MAC := first bits of EK(Σ ⊕ Zt)

L1 := L, Li := Li−1 · xntz(i), L−1 := L · x−1

multiplication in GF(2128) with f(x) = x128 + x7 + x2 + x + 1

ntz(i): number of trailing zeroes in binary representation of i

34

3GPP-MAC and XCBC

3GPP-MAC:

CBC-MAC where MAC = leftmost m bits of EK′(Σ)

with Σ = c0 ⊕ c1 ⊕ c2 ⊕ · · · ct

Birthday attack still applies [0,232,233,0] if m = 64.

XCBC [Black-Rogaway-00]: 3-key construction

CBC with XOR of K2 to final input block (Ht−1) if complete block

and K3 if padding was needed

XCBCX [Black-Rogaway-00]:

extra XOR of result with K2/K3 may increase strength against ex-

haustive key search à la DES-X

OMAC [Iwata-Kurosawa-03] renamed as CMAC by NIST:

derive K2/K3 from K (à la PMAC)

Birthday attack still applies

!! L := EK(0n) is used by banks as key confirmation value

35

Impact of AES

• Exhaustive key search no longer relevant, hence MAC Algorithms 3

and 4 are not needed

• Main ‘concern’ for CBC-MAC variants (only exception is XOR

MAC) is birthday forgery attack with 264 known texts

• One but last encryption in EMAC can be dropped [Handschuh-

Preneel06]

36

Countermeasures against birthday attack

best attacks known for AES are indicated (= conjected security level)

• increase the size of the internal memory n (Algorithm 5) [0,284,2,0]

(double computation)

• randomize the first block of the data (R-MAC) [Semanko01] [0,284,2,0]

(double MAC length)

• truncation: improves security against key recovery but adds very

limited protection against birthday forgery

• prepending the length: does not work

• prepending a serial number prior to padding (with length before

or after) does not work if serial numbers are in clear [Brincat-

Mitchell01]: [0,1,265,0]

• derive key in output transformation from a serial number

37

MAC: based on a hash function (MDC) (1)

secret prefix: h(K1||x) K1 x

prepend length to avoid that one can compute h(K1||x||y) from h(K1||x)
without knowing K1

secret suffix: h(x||K2) x K2

off-line attacks on h

38

MAC: based on a hash function (MDC) (2)

envelope: h(K1||x||K2) K1 x K2

• provable security based on pseudo-randomness of compression

function f

• forgery (for MD5): 264 known texts

• key recovery: 266 known texts and 220 chosen texts

MDx-MAC (SHA-1-MAC, RIPEMD-160-MAC)

• stronger pseudo-random properties: key in each iteration

• K1 and K2 in separate blocks: precludes key recovery

39

MAC: based on a hash function (MDC) (3)

HMAC: hK(X) = h(K2‖h(K1‖x))

security proof:

• h collision resistant for secret IV (*)

• f secure MAC if Hi−1 is secret key

• need also f pseudo-random function if Hi−1 is secret key for effi-

cient implementation

problem: security proof no longer valid after attack by Wang et al. (*)

fixed by [Bellare06]: it is sufficient to assume that f pseudo-random

function if Hi−1 is secret key

(then HMAC is PRF and thus a secure MAC)

40

Attacks on NMAC and HMAC

NMAC is variant of HMAC where keys are inserted into IV.

[Fouqe-Leurent-Nguyen07]

NMAC MD4: 288 chosen texts and 295 steps

[Rechberger-Rijmen07]

NMAC MD5: key recovery 245 chosen texts and 2100 steps (related

key)

NMAC SHA-1: key recovery 34/80 rounds with 2155 chosen texts and

2157 steps (related key)

HMAC SHA-1: forgery for 37/80 rounds with 265 data

HMAC SHA-1: inner key recovery for 53/80 rounds with 2100 data

and time

Further improvements to be expected.

41

Dedicated MACs

Message Authenticator Algorithm (ISO 8731-2: 1987):

• D. Davies and D. Clayden [1983]

• key size k = 64, internal memory m = 64, result n = 32

• typical speed: 2 Mbyte/s (50% of MD4)

• special mode for messages ≥ 1024 bytes

best known attacks:

• forgery: 224 messages of 1 Kbyte

• key recovery: 232 chosen texts, 244 . . .251 multiplications

• several large classes of weak keys

42

Other dedicated MAC algorithms

• KHF (cryptanalyzed by Wagner)

fixed length input

• COMP-128 (GSM example)

• CAVE (CDMA)

• Secure-ID

• Two-Track-MAC

43

Information-theoretic authentication

authentication codes (AC)/universal hash functions

[1970s (Zobrist/Simmons/Carter-Wegman)]

• advantages

– provably secure: only combinatorial

– extremely fast (10-15 times faster than AES/HMAC)

– parallelizable and incremental

• disadvantages

– use key only once

– sometimes very large keys: low key agility

– security level in bits against forgery is at most half the key size

44

Information-theoretic authentication

[Black-Halevi-Krawczyk-Krovetz-Rogaway99]

[. . .] “since the combinatorial property of the universal hash-function

family is mathematically proven (making no cryptographic hardness

assumptions), it needs no “over-design” or “safety margin” the way

a cryptographic primitive would. Quite the opposite: the [UMAC]

hash-function family might as well be the fastest, simplest thing that

one can prove universal.”

45

Example: polynomial authentication code

(Change of notation: k is key rather than key size in bits)

• key k′, k ∈ GF(2n)

• split x into x1, x2, . . . , xt, with xi ∈ GF(2n)

• note ℓ = t · n

g(x) = k′ +
t
∑

i=1

xi · ki

Pr(success of forgery after seeing 1 text/MAC pair) = (ℓ/n)/2n = t/2n

In practice: value k can be reused

46

Step 1: Compress

family of functions gk : A −→ B with a =|A| and b =|B|.
B, ⋆ an Abelian group

Let ǫ be any positive real number.

gk is an ǫ-almost universal class (or ǫ−AU class) G of hash functions

if ∀x, x′ 6=∈ A

Pr
k

{

gk(x) = gk(x
′)
}

≤ ǫ .

gk is an ǫ-almost ⋆ universal class (or ǫ-A⋆U class) G of hash functions

if ∀x, x′ 6= x ∈ A and ∀∆ ∈ B

Pr
k

{

gk(x) = gk(x
′) ⋆ ∆

}

≤ ǫ .

47

Step 1: Compress (2)

functions that are ǫ-AU

• gk(x) =
∑t

i=0 xi · ki with k, xi ∈ GF(2r) or GF(p)

functions that are ǫ-A⋆U

• gk(x) =
∑t

i=1 xi · ki with k, xi ∈ GF(2r) or GF(p)

• MMH: gk(x) =
(
∑t

i=1 xi · ki

)

mod p

xi, ki, ∈ Z232 and p = 232 + 15 (inner sum mod 264) [Halevi-Krawczyk97]

• NMH: gk(x) =
(

∑t/2
i=1 (x2i−1 + k2i−1) · (x2i + k2i)

)

mod p

xi, ki ∈ Z232 and p = 232 + 15 [Wegman-Carter81 and Halevi-Krawczyk97]

• NH: gk(x) =
(

∑t/2
i=1 ((x2i−1 + k2i−1) mod 2w) · ((x2i + k2i) mod 2w)

)

mod 22w

xi, ki ∈ Z2w [BHKKR99]

• WH: gk(x) =
(

∑t/2
i=1 (x2i−1 + k2i−1) · (x2i + k2i)x(t/2−i)w

)

mod p(x)

xi, ki ∈ GF(2w) (polynomials) [Kaps-Yüksel-Sunar04]

48

Step 2: Replace addition k′+

pseudorandom function family fk′ ; computational security

Option 1: MACk||k′(x) = fk′(gk(x)) with g ǫ-AU

Option 2: MACk||k′(x) = fk′(n) ⋆ gk(x) with g ǫ-A⋆U

need nonce but better security

Option 3: MACk||k′(x) = fk′(n||gk(x)) with g ǫ-AU

need nonce and larger input of f

49

Observations on universal hash functions for MAC

1. reuse of k is common in practice, in particular if k is large

2. nonce n is supposed to be unique; what if it isn’t?

• nonce is always used twice (generation/verification)

• nonce reuse for verification (e.g., if random numbers)

• nonce reuse for MAC generation more problematic

3. weak keys: ∀x, x′, x′ 6= x Prk
{

gk(x) = gk(x
′) ⋆ ∆

} ≤ ǫ does not

imply that ∀k Prx,x′
{

gk(x) = gk(x
′) ⋆ ∆

} ≈ 1/|B|. For some keys k

Pr
x,x′

{

gk(x) = gk(x
′) ⋆ ∆

}

≫ 1/|B|

4. simple combinatorial scheme: partial knowledge of k may be dev-

astating (e.g., verification by leaking first 2 key bytes)

5. messages of special form reduce hash value to subspace

50

Related Work
[Coppersmith96] Finding a small root of a bivariate integer equation; factoring with
high bits known.

[Bellare-Goldwasser97] Verifiable partial key escrow

[McGrew-Fluhrer05] Multiple forgery attacks

[Preneel-vanOorschot-Knudsen96] Key recovery attacks on ANSI retail MAC

[Blackburn-Paterson04] Cryptanalysis of a MAC due to Cary and Venkatesan

[Black-Cochran 06] Focus on reforgeability

UMAC RFC 4418 contains warnings:

• be careful if too many wrong MAC values

• “once an attempted forgery is successful, it is possible, in principle, that sub-
sequent messages under this key may be easily forged. This is important to
understand in gauging the severity of a successful forgery, even though no
such attack on UMAC is known to date.”

Even two appendices full of warnings for GCM NIST SP 800-38D

51

Polynomial hash

gk(x) =
∑t

i=1 xi · ki with k, xi ∈ GF(2n)

GCM NIST SP-800 38-D:

• Option 2: MACk||k′(x) = truncτ (AESk′(n) ⊕ gk(x))

• k = AESk′(000 . . .00)

trivial weak key: k = 0 (extremely unlikely)

trivial to verify a guess for k, even if we do not know k′ (ok for GCM)

if order of k divides l < t: swap of two blocks leaves gk(x) unchanged

[Joux06] attack on GCM (nonce reuse by sender):

compute MACk||k′(x) ⊕ MACk||k′(x
′) = gk(x) ⊕ gk(x

′) = g∗k(x, x′)
k is one of the t roots of the polynomial g∗k

52

Polynomial hash (2)

Joux: “replacing the counter encryption for MACs by the classical

encryption with the block cipher usually used with Wegman-Carter

MACs seems a safe option.”

Variant on Joux attack that works even for Option 1 or 3

(more expensive, same cost as forgery, but no nonce reuse):

• obtain 1 MAC value for a text x of your choice

• choose x′ such that the polynomial with coefficients from x − x′

has t distinct roots (each time)

• perform a MAC verification query for x′

• after 2n/t trials you know that k is one of t values

• perform another t MAC verification queries to find out which one

of the t

easy to take into account any information you may have on k.

53

Polynomial hash (3)

special message attack [Ferguson05]

• xi = 0 except if i = 2j for some j: gk(x) =
∑l

j=0 x2j · k2j

• squaring is a linear operation in GF(2n)

hence we can write the bits of the hash as follows:

gk(x)[.] =
∑

i∗,j∗,u∗
xi∗[j∗] · k[u∗]

• choose x, x′ such that truncs(gk(x)) = truncs(gk(x
′)) (1 ≤ s < τ),

independent of the value of k

• submit x′ for verification (same nonce); success prob. 1/2τ−s

• collect r · 2τ−s messages (same nonce!) resulting in r forgeries;

each forgery yields τ − s linear equations in the key bits.

response by NIST: be careful with wrong MAC values; no error messages

54

MMH [Halevi-Krawczyk97]

gk(x) =
(

∑t
i=1 xi · ki

)

mod p

xi, ki, ∈ Z232 and p = 232 + 15 (inner sum mod 264)

attacks (consider t = 2):

• k1 = k2 = 0: all messages map to 0.

• ki = 0: result does not depend on xi

• k1 = k2: can swap x1 and x2: no effect

• k1 = α · k2 mod p, gk(x) unchanged if one replaces (x1, x2) by

(x2/α, x1 · α)

hence a guess for α can be verified with one verification query

• easy to exploit partial key information x1k1 + x2k2 = x′1k1 + x′2k2

55

NH – UMAC [BHKKR99] – VMAC – WMAC

gk(x) =

t/2
∑

i=1

(

(x2i−1 + k2i−1
)

mod 2w) · ((x2i + k2i) mod 2w)

 mod 22w,

xi, ki ∈ Z2w

• if k2i−1 = k2i: can swap x2i−1 and x2i without changing result

• if ((x2i−1 + k2i−1) mod 2w) = 0, gk(x) is independent of x2i.

• assume that k2i = k2i−1 + ∆ mod 2w for ∆ ∈ Z2w,

then gk(x) unchanged if one replaces

(x2i−1, x2i) by (x2i + ∆ mod 2w, x2i−1 − ∆ mod 2w)

• recover t key words with t · 2w verification queries

• with an oracle for s bits of one key word, expected complexity to

find one word reduces to 2w−s verification queries.

56

NH – UMAC [BHKKR99] – VMAC – WMAC (2)

UMAC: w = 32 marginal; ok if output length of 64, 96 or 128 bits.

(earlier version had w = 16)

VMAC: w = 64 (probably ok)

WMAC: variant with w = 16, 32 and 64

UMAC RFC 4418 [March 2006]

“It should be pointed out that once an attempted forgery is successful,

it is possible, in principle, that subsequent messages under this key

may be easily forged. This is important to understand in gauging the

severity of a successful forgery, even though no such attack on UMAC

is known to date.”

57

Conclusions

While universal hash functions have very attractive performance and

provable security, they can be very brittle in practice

• avoid reusing keys (Snow3G is good example)

• sender/verifier needs to guarantee/check uniqueness of nonces

• vulnerable to oracle that reveals part of the key (and thus to side-
channel attacks)

Some schemes are more secure than others. . .

EMAC based on AES is slower but more “robust”

• internal collisions (264 texts) lead to forgeries, but not to key
recovery

• no known way to use an oracle that gives access to 32 or 64 key
bits

• faster key setup

Ongoing: other universal hash functions, including improved attack

on MAC of Cary and Venkatesan

58

Summary

number of divide and partial key
weak keys conquer attacks information

Polynomial hash GF(2n) 1 k only yes
Polynomial hash GF(p) 1 k only ?
MMH type I/II w-bit subkey ki yes
Square Hash type II w-bit subkey ki yes
NMH/NH/WH type II/III w-bit subkey ki yes

59

