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Information processing

2

mechanical 
(104)

mainframe 
(105)

PCs and LANs 
(107)

Internet and mobile (109)

the Internet of things, 
ubiquitous computing, 
pervasive computing, 
ambient intelligence (1012)
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Information processing

Continuum between software 
and hardware
ASIC (microcode) – FPGA –

fully programmable 
processor

Everything is always 
connected everywhere 

4

Research ↔ Practice

HARDWARE
Limited (govt+financial sector)
DES, 3DES

DES, RSA, DH, CBC-MAC
Provable security (PKC), 
ZK, ElGamal, ECC, stream 
ciphers 
Quantum crypto
MD4, MD5                
Provable security (SKC)
Key escrow
Quantum cryptanalysis
How to use RSA? 
Alternatives to RSA
PKI
AES 
ID-Based Crypto

70

80

90SOFTWARE
GSM, PGP
C libraries (RSA, DH)
SSL/TLS, IPsec, SSH, S/MIME
Java crypto libraries
WLAN

EVERYWHERE
Trusted computing, DRM, 

3GPP, RFID, sensor nodes 
…
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Implementations in embedded systems

Cipher Design,
Biometrics

D
Q

Vcc

CPU
Crypto

MEM

JCA
Java

JVM

CLK

Identification

Confidentiality
Integrity

SIM

D
Q

Vcc

CPU
MEM

JCA
Java

KVM

CLK

Protocol: Wireless authentication protocol 
design

Algorithm: Embedded fingerprint matching
algorithms, crypto algorithms

Architecture: Co-design, HW/SW, SOC

Circuit: Circuit techniques to combat side
channel analysis attacks

Micro-Architecture: co-processor design

Identification

Confidentiality
Integrity

Identification
Integrity

SIMSIMSIM

Slide credit: Prof. Ingrid Verbauwhede

Technology aware solutions?
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Lightweight crypto design
• Overall protocol crucial
• Security architecture: SK-PK, central-distributed
• Relative cost of  

computation/communication/storage
• Architectural decisions

– area
– clock frequency
– power consumption and energy

• Flexibility can be sacrificed
• Side channel attacks
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Challenges for crypto
• security for 50-100 years
• authenticated encryption of Terabit/s 

networks
• ultra-low power/footprint

secure software and 
hardware 
implementations

algorithm agility

performance

cost security
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Outline

• Context
• Block ciphers
• Stream ciphers
• Hash functions
• MAC algorithms
• Public-key cryptography
• Secure implementations
• RFID protocols
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Block cipher

• larger data units: 64…128 bits
• memoryless
• repeat simple operation (round) many times

block 
cipher

P1

C1

block 
cipher

P2

C2

block 
cipher

P3

C3
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Block ciphers

3-DES (112-168)
IDEA (128)
MISTY1 (128)
KASUMI (128 in 3G, 64 in 2G)
HIGHT (128)
PRESENT (80-128)
TEA (128)
mCRYPTON (128)
KATAN (80)

insecure secure?
0 50 80 128

Symmetric key lengths

AES (128-192-256)
CAMELLIA
RC6
CLEFIA

64-bit block 128-bit block

56 bits:   4 seconds with M$ 5
80 bits:   2 year with M$ 5 
128 bits: 256 billion years with B$ 5
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3-DES: NIST Spec. Pub. 800-67
(May 2004)

• single DES abandoned (56 bit)
• double DES not good enough (72 bit)
• 2-key triple DES: until 2009 (80 bit)
• 3-key triple DES: until 2030 (100 bit)

DES Clear  
text

DES-1 DES 

1 2 3

%^C&
@&^(

extremely vulnerable to 
a related key attack

12

AES (2001)
• FIPS 197 published on December 2001after 4-year open 

competition
– other standards: ISO, IETF, IEEE 802.11,…

• fast adoption in the market
– except for financial sector
– NIST validation list: 1267 implementations

• http://csrc.nist.gov/groups/STM/cavp/documents/aes/aesval.html

• 2003: AES-128 also for classified information and AES-
192/-256 for secret and top secret information!

• security: 
– algebraic attacks of [Courtois+02] not effective
– side channel attacks: cache attacks on unprotected 

implementations

[Shamir ’07] AES may well be the last block cipher
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AES variants (2001)
• AES-128
• 10 rounds 
• sensitive

Light weight key schedule, in particular for the 256-bit version
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• AES-192
• 12 rounds 
• classified

• AES-256
• 14 rounds 

• secret and top 
secret
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AES implementations: 
efficient/compact

• HW: 43 Gbit/s in 130 nm CMOS [‘05]
• Intel: new AES instruction: 0.75 cycles/byte [’09-’10]
• SW: 7.6 cycles/byte on Core 2 or 110 Mbyte/s

bitsliced [Käsper-Schwabe’09]

• HW: most compact: 3600 gates
– PRESENT: 1029, KATAN: 1054, CLEFIA: 4950

15

AES-256 security
• Exhaustive key search on AES-256 takes 2256 encryptions

– 264: 10 minutes with $ 5M
– 280: 2 year with $ 5M 
– 2120 : 1 billion years with $ 5B

• [Biryukov-Khovratovich’09] related key attack on AES-256
– requires 2119 encryptions with 4 related keys,
– data & time complexity 2119 << 2256

• Why does it work? Very lightweight key schedule

• Is AES-256 broken? 
No, only an academic “weakness” that is easy to fix

• No implications on security of AES-128 for encryption
• Do not use AES-256 in a hash function construction

16

What is a related key attack?
• Attacker chooses plaintexts and key difference C
• Attacker gets ciphertexts
• Task: find the key
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AES-256
[Biryukov-Khovratovich’09]

[Biryukov-Dunkelman-Keller-Khovratovich-Shamir’09]

Slide credit: Orr Dunkelman

Related key 
attack: 4 keys,  
data & time 
complexity 
2119 << 2256
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Should I worry about a related key attack?
• Very hard in practice (except some old US banking 

schemes)
• If you are vulnerable to a related key attack, you are 

making very bad implementation mistakes
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h

• This is a very powerful attack 
model: if an opponent can 
zeroize (= AND 0) 224 key bits 
of his choice (rather than ⊕ C)
he can find the key in a few 
seconds for any cipher with a 
256-bit key

• If you are worried, hashing 
the key is an easy fix
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Keeloq [Smit+/-’85]
aka the M$10 cipher

• block length: 32  
• key length: 64
• rounds: 528

20

KATAN/KTANTAN
[De Cannière-Dunkelman-Knežević’09]

http://www.cs.technion.ac.il/~orrd/KATAN/

• block length: 32, 48, 64
• key length: 64
• rounds: 254

21

Low cost hardware
[Bogdanov+08,Sugawara+08]

0
20
40
60
80

100
120
140
160
180
200

PRES-80 mCRYPT
ON-96

HIGHT 3-DES AES-128

Warning: this is not a “fair” comparison
• Technologies range from 90nm-350nm
• Power consumption could be real problem

Throughput/Area 
(bps/GE) @ 100KHz

KATANTEA
PRES-128

128-bit block 

CLEFIA AES-128
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Low cost hw: throughput versus area
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Block ciphers: conclusions
• Several mature block ciphers available
• Security well understood

– in particular against statistical attacks (differential, 
linear) and structural attacks

• More work:
– algebraic attacks
– related key attacks
– understanding of structural tradeoffs

• What are the limitations for lightweight block 
ciphers?

24

Stream ciphers

• historically very important (compact)
– LFSR-based: A5/1, E0 – practical attacks known
– software-oriented: RC4 – serious weaknesses
– block cipher in CTR or OFB (slower)

• today: 
– many broken schemes
– lack of standards and open solutions
– standards: SNOW2.0, SNOW3G, MUGI, Rabbit, 

DECIM, K2,..



Lightweight Crypto
Bart Preneel

Finse, Norway – April 2010

5

25

Moore’s Law: computation/storage 2000-2020

Microprocessor performance: Gflops/s
Ethernet: speed in Gbps
Storage: Gigabyte/s

1000000

1
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100

1000

10000

100000

2004
2006

2008
2010

2012
2014

2016
2000

2002
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Open competition for stream ciphers 
http://www.ecrypt.eu.org

• run by ECRYPT
– high performance in software (32/64-bit): 128-bit key
– low-gate count hardware (< 1000 gates): 80-bit key
– variants: authenticated encryption

• 29 April 2005: 33 submissions
• Many broken in first year
• End of competition: April 2008

27

The eSTREAM Portfolio
Apr. 2008 (Rev1 Sept. 2008)

TriviumSosemanuk

MICKEY v2Salsa20/12

Grain v1Rabbit

F-FCSR-HHC-128

HardwareSoftware

in alphabetical order

3-10 cycles per byte 1500..3000 gates

28

Trivium

29

Cube attack [Dinur-Shamir’08]

• Exploits low degree equations in stream cipher
• Can break certain ciphers which could not be 

broken before
• …Media hype and controversy

– Relation to higher order attacks (Lai) and AIDA 
(algebraic IV differential attack) (Vielhaber)

• Trivium: 
– key setup can be broken if number of rounds is 

reduced from 1024 to 793 (Aida) or 767 (cube)
– attack can probably be further improved
– solution: increase number of rounds to 2048

30

Performance reference data 
(Pentium M 1.70GHz Model 6/9/5)
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Low cost hw: throughput versus area
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Stream ciphers: conclusions

• Substantial progress made in last 5 years
– concrete designs
– data-time-memory tradeoffs

• 80-bit security implies 160-bit memory 
(seems to be a lower bound)

• Many designs still “at the edge” (quite risky)
• Expect further progress

33

Hash functions

• collision resistance
• preimage resistance
• 2nd preimage 

resistance

This is an input to a crypto-
graphic hash function.  The input 
is a very long string, that is 
reduced by the hash function to a 
string of fixed length.  There are 
additional security conditions: it 
should be very hard to find an 
input hashing to a given value (a 
preimage) or to find two colliding 
inputs (a collision). 

1A3FD4128A198FB3CA345932

• MDC (manipulation
detection code)

• Protect short hash value
rather than long text

h

34

The complexity of collision attacks
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35

MD5
• Advice (RIPE since ‘92, RSA 

since ‘96): stop using MD5
• Largely ignored by industry 

(click on a cert...)

• Collisions for MD5
– brute force (264): 1M$ 10 hours 

in ‘09
– [Wang+’04] collision in 15 

minutes on a PC
– [Stevens+’09] collisions in 

milliseconds
• 2nd preimage: 

– [Sasaki-Aoki’09] 2123

36

SHA-1
• SHA designed by NIST (NSA) in ‘93 
• redesign after 2 years (’95) to SHA-1

Prediction: collision for SHA-1 in the next 12-18 months
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90

2003 2004 2005 2006 2007 2008 2009 2010

SHA-1

[Wang+’04]

[Wang+’05] [Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks 
unpublished/withdrawn
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Hash function attacks: 
cryptographic meltdown yet with limited impact

• collisions problematic for future
– digital signatures for non-repudiation (cf. traffic tickets in Australia?)

• 2nd preimage: 
– MD2: 273  [Knudsen+09]
– MD4: 297/270 with precomputation [Rechberger+10]
– MD5: 2123 [Sasaki-Aoki’09]
– SHA-1: 48/80 steps in 2159.3 [Aoki-Sasaki’09]

• RIPEMD-160 seems more secure than SHA-1 ☺
• use more recent standards (slower and larger)

– SHA-2 (SHA-256, SHA-224,…SHA-512)
– SHA-3?

38

Hash function attacks: impact
• High profile attack on CAs in December 2008
• TLS/SSL has been designed for algorithm 

negotiation and flexible upgrades
– …but the negotiation algorithm uses MD5 || SHA-1
– negotiation cannot be upgraded without changing the 

standard: TLS 1.1 -> 1.2
– brings serious cost: no upgrade until there is an 

economic attack
• HMAC: cf. infra

39

Rogue CA attack 
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed 
root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special 
collision this results in a fake CA 
cert (need to predict serial 
number + validity period)

• 6 CAs have issued certificates signed with MD5 in 2008:
– Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC 

TrustCenter AG, RSA Data Security, Verisign.co.jp

• impact: rogue CA that 
can issue certs that 
are trusted by all 
browsers

40

Other ways to fool CAs

• [Moxie Marlinspike’09] Black Hat
– browsers may accept bogus SSL certs
– CAs may sign malicious certs

• certificate for www.paypal.com\0.kuleuven.be will be 
issued if the request comes from a kuleuven.be
admin

• response by PayPal: suspend Moxie’s account
– http://www.theregister.co.uk/2009/10/06/paypal_banishes_ssl_hacker/

41

NIST AHS competition (SHA-3)
• SHA-3 must support 224, 256, 384, and 512-bit message 

digests, and must support a maximum message length of at 
least 264 bits

0
20
40
60
80

Q4/08 Q3/09 Q3/10 Q4/11

round 1
round 2

final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 9/12/08

Round 2 (14): 24/7/09

Standard: 2012

42

The Candidates

Slide credit: Christophe De Cannière
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Preliminary Cryptanalysis

Slide credit: Christophe De Cannière
Slide credit: Christophe De Cannière
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End of Round 1 Candidates

Slide credit: Christophe De Cannière
Slide credit: Christophe De Cannière

a

45

Round 2 Candidates

Slide credit: Christophe De Cannière

a

46

Lightweight (?) hash functions

0.262 7630Cubehash8/1 
(512)

47.02004256PRESENT-
based (128)

33.02678100MAME (256)

4.14510900SHA-256

Throughput/Area 
(bps/GE)

Throughput 
Kbps     

(@100 KHz)

Area 
(GE)

Block cipher-based designs require strong key 
schedule – otherwise risky

47

Hash functions: conclusions
• Cryptographic meltdown but fortunately 

implications so far limited
• Designers often too optimistic (usually need 2x 

more rounds)
• Other weaknesses have been identified in 

general approach to construction hash functions
• Today, our understanding has improved 

substantially, so probably it is likely that it will 
take > 20 years before we have a SHA-4 
competition

• No really lightweight hash functions

48

MAC Algorithms

• CBC-MAC: EMAC and CMAC
• HMAC
• GCM and GMAC
• Authenticated encryption
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CBC-MAC based on AES (LMAC) 

AES

P1

C1

AES AES

P2 P3

C2
C3

select leftmost 64 bits

security level against forgery: 264 text/MAC pairs

NIST prefers CMAC: requires only 1 block cipher key
50

HMAC based on MDx, SHA

f1

f2

xK2

K1

2126 CP33 of 6464MD5

2154.9 CP43 of 8080SHA-1
2109 CP8080SHA(-0)

251 CP & 2100 time (RK)6464MD5

288 CP & 295 time 4848MD4
Data complexityRounds in f2Rounds in f1

• Widely used in SSL/TLS/IPsec

• Attacks not yet dramatic

• NMAC weaker than HMAC

51

GMAC: polynomial authentication code 
(NIST SP 800-38D 2007 + 3GSM)

• keys K1, K2 ∈ GF(2128)
• input x: x1, x2, . . . , xt, with xi ∈ GF(2128)

g(x) = K1+ Σi=1
t xi • (K2)i

• in practice: compute K1 = AESK(n)  (CTR mode)

• properties:
– lightweight and/or fast in software and hardware 

(support from Intel/AMD)
– not very robust w.r.t. nonce reuse, truncation, MAC 

verifications, due to reuse of K2  (not in 3GSM!)
– versions over GF(p) (e.g. Poly1305-AES) seem more 

robust

52

Authenticated encryption
• Default modes: ECB/CBC/CFB/OFB and CTR
• Needed for network security, but only fully understood 

by crypto community around 2000 (too late)
• Standards:

– CCM: CTR + CBC-MAC [NIST SP 800-38C]
– GCM: CTR  + GMAC [NIST SP 800-38D]

• Both are suboptimal 
• IAPM
• XECB
• OCB

• GCM
• CCM
• EAX

patented

Issues:
• associated data
• parallelizable
• on-line
• provable security

53

MAC algorithms: conclusions

• can get better performance than encryption
• EMAC or OMAC (CBC-MAC) seems fine
• widely used choices lack robustness

• Modes for authenticated encryption today 
well understood but not yet widely deployed

55

Public key algorithms

• RSA
• ECC/HECC
• NTRU

Slide credits: Lejla Batina, Junfeng Fan, 
Ingrid Verbauwhede
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Factorisation records
2009: 768 bits or 232 digits
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Effort (log)

1 digit ~3.3 bits

2000

512 bits

768 bits

2009
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Factorisation
• New record in 2009: 768 bits (or 231 digits) using NFS
• New record in May 2007: 21039-1 (313 digits) using SNFS

• hardware factoring machine: TWIRL [TS’03]
(The Weizmann Institute Relation Locator)
– initial R&D cost of ~$20M
– 512-bit RSA keys can be factored with a device costing $5K in about 

10 minutes
– 1024-bit RSA keys can be factored with a device costing $10M in 

about 6 weeks

• ECRYPT statement on key lengths and parameters 
http://www.ecrypt.eu.org

896-bit factorization in 2012, 1024-bit factorization in 2020?

58

Elliptic curve cryptography
58

Elliptic curve : E:  y2=x3-13x-3

P
Q

R=P+Q

Point multiplication: 
r P = P + P + … + P

r

Edwards curve : E: x2 + y2 = 1 - 30x2y2

[ Plotted by P. Schwabe ]

59

Key lengths for confidentiality 
http://www.ecrypt.eu.org

282409614130-50 years

206204810310-20 years

1461024735 years

10051250days/hours

ECCRSAsymmetricduration

Assumptions: no quantum computers; no 
breakthroughs; limited budget

60

Point multiplication - ECC
60

Point
Multiplication

Point
Addition

Point
Doubling

Modular
Addition

Modular
Inversion

Modular
Multiplication

e.g. 5 P = 2 (2 P) + P

e.g. Q1= 2 P, Q2 = Q1 + P

e.g. a + b mod f,
a * b mod f,
a-1 mod f

Group operations

Field operations

ECC-based Protocols

61

Multiplier

Algorithm 1: Modular Multiplication
in GF(2n)

Input: A(x),  B(x) and p(x)
Output: A(x)B(x) mod p(x)
1: C(x) ← 0
2: for i=n-1 to 0 do
3: C(x) ← x(C(x) + cnp(x)+biA(x))
4: end for
Return C(x)/x

A(x) B(x) C(x)

Bit-serial Mult.

Bit-serial Mult.

Bit-serial Mult.

Bit-serial Mult.

d

Digit-serial Mult.

61
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ECC processor62

I/O (8b)

Registers
(N×163b)

ECC coprocessor

RF

Main Control RAM

Controller

Digit-serial Mult.
(for GF(2163))

• Area
• Energy
• Security

63

Low footprint
63• Curve parameters

– ECC over binary fields, e.g. GF(2163)
– Low weight p(x)

• Coordinates
– Affine : P(x,y)
– Projective : P(X,Y,Z)
– López-Dahab : P(x, z)

• Only 6 registers!
[LBV’08]

64

Low energy
64 • Energy = Power × Delay

• Reduce power
– area
– flip-flop toggling
– clock frequency

• Reduce delay
– cycle counts
– memory accesses [LBV’08]

65

Hyperelliptic curve Cryptography
65 • Definition

Hyperelliptic curve C over field K is defined by
y2 + h(x)y = f (x)    where h(x),f (x) ∈K[x]

– deg(h(x))<g and deg(f(x)) = 2g + 1
– No points also satisfy 2v + h(u) = 0, h′(u)v − f′(u) = 0

• Divisor and Jacobian
A divisor D is a formal sum of points on C.

D = ∑mPP
– degD = ∑mP
– Jacobian is defined as J = Div0 / PrinD

66

Point multiplication - HECC
66

Scalar
Multiplication

Divisor
Addition

Divisor
Doubling

Modular
Addition

Modular
Inversion

Modular
Multiplication

Group 
operations

Field 
operations

HECC-based Protocols

67

Public key performance comparison
67

[kGates] [uW] [104 Cycles] [uJ]

[LBV’08]

[FBV’08]

[ABFVO’08]

* ECC/BEC over GF(2163)
* HECC over GF(283)
* NTRU parameters:  N=167, q=128, p=3

[Preprint]
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Models and reality

69

Implementations: side channel attacks

First round of DES

ExpansionRSA

70

Implementation attacks

• measure: time, power, electromagnetic 
radiation, sound

• introduce faults (even in CPUs – bug attacks)
• combine with statistical analysis and 

cryptanalysis
• software: API attacks

• major impact on implementation cost

Sun Tzu, The Art of War: 
In war, avoid what is strong and attack what is weak

L.R. Knudsen: "It is not cryptanalysis, it is vandalism"
71

Timing attacks on AES software 
implementations

• Variable execution time typically associated 
with “if then else”, rotations, multiplications

• Due to cache effects, several fast software 
implementations of AES can be broken
– e.g., Open SSL: 65 milliseconds

• Fixes: 
– implementations that are 2-3x slower
– special cache for crypto algorithms

• Cache attacks apply to any cryptographic 
algorithm that uses tables

72

New side channel attack
Bug attack [Biham-Carmeli-Shamir’08]

• Introduce a bug in a multiplier such that it 
produces the wrong result for a single input 
pair
– Example: Pentium FDIV bug ’94

• Results in key recovery for RSA-CRT, ECC

• Requires no local access (as a fault attack); 
only needs chosen texts

• If 64x64: impossible to detect by testing
• Risk of outsourcing the manufacturing

73

Side channel attacks on 
unprotected implementations?
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RFID technology

1. Passive tag
2. Battery assisted (BAP)
3. Active tag with onboard power source

Slide credits: Lejla Batina, Junfeng Fan, Dave Singelée, 
Ingrid Verbauwhede
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RFID applications

• Asset tracking
• Barcode replacement
• RFID passports
• Mobile credit card payment systems
• Transportation payment systems
• Sporting events (timing / tracing)
• Animal identification
• …
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RFID security problems (1/2)

• Impersonation attacks
– Genuine readers
– Malicious tags

=> Tag-to-server authentication

77

RFID security problems (2/2)

• Eavesdropping
• Replay attacks
• Person-in-the-middle attacks
• Cloning
• Side-channel attacks
• …
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RFID privacy problems (1/5)

[A. Juels. RSA Laboratories]

Mr. Jones in 2015
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RFID privacy problems (2/5)

[A. Juels. RSA Laboratories]

Mr. Jones in 2015
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RFID privacy problems (3/5)

[A. Juels. RSA Laboratories]

Mr. Jones in 2015 Wig
model #4456 
(cheap polyester)

Das Kapital and
Communist-party 

handbook

1500 Euros
in wallet

Serial numbers:
597387,389473

…
30 items 
of lingerie

Replacement hip
medical part #459382
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RFID privacy problems (4/5)

• RFID Privacy problem
– Malicious readers
– Genuine tags

=> Untraceability

82

RFID privacy problems (5/5)

• Untraceability
– Inequality of two tags: the (in)equality of two 

tags must be impossible to determine
• Theoretical framework [Vaudenay’07]

– Narrow versus wide privacy
• Wide attacker has access to result of verification 

(accept/reject) at reader side
– Weak versus strong privacy

• Strong attacker can extract secret key from tag 
and reuse it

83

Cryptographic authentication protocol

• Tag proves its identity using challenge 
response
– Security (entity authentication)
– Privacy

Reader Tag

Challenge

Response
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Technological requirements

• Scalability
• Implementation issues

– Low-cost implementation
• Memory
• Gate area

– Lightweight
– Efficient

=> Influence on cryptographic building blocks

85

Implementation cost

• Symmetric encryption
– AES: 3-4 kgates

• Cryptographic hash function
– SHA-3: 8 – 30 kgates [ECRYPT II: SHA-3 Zoo]

• Public-key encryption
– Elliptic Curve Cryptography (ECC): 11-15 kgates

Public key cryptography is suitable for RFID
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Symmetric protocols

• Fixed Access Control (AC)
– fixed response from a tag
– easily tracked

• Randomized AC with a shared key
– can clone tags by hacking a single tag

• Randomized AC w/o a shared key
– not scalable

• Randomized AC by updating a key
– vulnerable against the Denial of Service Attack

87

• Conventional public-key authentication
– Schnorr or Okamoto 
– vulnerable to tracking

• GPS
– variant of Schnorr protool
– secure transfer of a tag’s ID is not solved

• Rabin Encryption
– large key size and transmission
– compact architecture [Feldhofer-Oren’09]

• Wide–Weak Privacy–Preserving RFID Authentication 
Protocols," Int. Conf. on Mobile Lightweight Wireless 
Systems [Lee-Batina-Singelée-Verbauwhede’10] 

Asymmetric protocols

88

System parameters
[Lee-Batina-Singelée-Verbauwhede’10]
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Schnorr based on ECC

Problem: tag’s public key can be computed from 
the exchanged messages

90

Secure ID Transfer
(first attempt)

91

Comparison with Schnorr
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ECC-based authentication protocols

• rely exclusively on ECC
• first attempt is vulnerable to person-in-

the-middle attack [Deursen-Radomirovic’09]
but has been repaired [LBSV’10] to give 
strong and wide privacy

• Protocols (not shown but paper is online)
– ID-transfer scheme
– password transfer scheme 
– scalable search protocol 

93

for i=n-1 to 0
Q← 2Q
if ki=1

Q ← Q+P
end for

Side-channel attacks and 
countermeasures

93

• Unprotected method

• Countermeasure
– Unified PA/PD
– Window method
– Montgomery ladder
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Challenge: low power public key

• Protocol : asymmetric (most work 
for the reader)

• Algorithm: Elliptic curve (163 bits)
• Field Operation: Binary and not 

Prime fields: easier field operations
• Projective coordinate system: (X, Y, 

Z) instead of (x,y): no field inversions
• Special coordinate system: no 

need to store Y coordinates (Lopez-
Dahab) and common Z (only one Z 
coordinate)

• Minimize storage: Only 5 registers 
(with mult/add/square unit) or 6 
registers (with mult/add-only unit)D

Q

Vcc

CPU
MALU

MEM

JCA

Java

JVM

CLK

Cloning
Tracking

D
Q

Vcc

8 bit uP

MEM

Montgomery ladder
Projective

Common Z coord

CLK

Scalable

Elliptic curve
over GF(2163)

R
E

G

Address at all abstraction levels!
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Performance results

Circuit Area (Gate Eq.) 14,566

Cycles for EC point multiplication 59,790

Frequency 700 KHz

Power 13.8 µW

Energy for EC point multiplication 1.18 µJ
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Lightweight symmetric cryptography:
lessons learned (1)

S S S S S S S S S S S S S S S S

S S S S S S S S S S S S S S S SMixColumns MixColumns MixColumns MixColumns

• How can we save?
– Non-linear layer can be reduced from 1280 gates

(AES) to 32 gates (KATAN) or even 3 gates (Trivium) 
– Linear layer can be reduced from 396 gates (AES) to 0 

gates, e.g. bit permutation (KATAN/PRESENT)
• In both cases, this requires more rounds for block

ciphers (and thus more energy)

Non-linear layer

Linear layer
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Lightweight symmetric cryptography:
lessons learned (2)

• If non-linear and linear layers are heavily optimized, 
the cost is dominated by memory for key (k bits, k=80-
128) and by memory for state (n bits)
– Block cipher: n bits – can encrypt at most 2n/2-10 plaintexts
– Stream cipher: n ≥ k bits needed (in practice often 2k)
– Hash function: n ≥ 2k bits needed for 2k collision resistance 

(but no key!)
– MAC: can be based on block cipher

• Hardware: how many gates does it cost to store 1 bit?
– technology dependent: between 2 and 8

• Software: RAM usage is critical factor
– 256 bytes on low-end 8-bit processor (such as PIC10-16, 

RS08TM, HC08TM, COP8, 80C51TM)
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Lightweight public-key cryptography:
lessons learned (1)

• Compact public key crypto (ECC, HECC, 
NTRU) is feasible but requires 
– hardcoded designs
– context-dependent optimization for area, power, 

energy, speed on multiple abstraction layers
• Concerns: side channel attacks and long term 

security

• Case: RFID
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Challenges for crypto
• security for 50-100 years
• authenticated encryption of Terabit/s 

networks
• ultra-low power/footprint

secure software and 
hardware 
implementations

algorithm agility

performance

cost security
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The power challenge: 
AES-128 speed/power for various platforms (Joule/Gb)

CMOS FPGA PIII C - Emb.
Sparc

Java-
Emb.
Spar

speed power power/speed

1 Gbit/s

1 Mbit/s

1 Kbit/s

mWatt

Watt

106
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1
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demand in 
applications

maturity

low

low

high

high

block 
ciphers

hash 
functions

stream 
ciphers

public key 
operations

sophisticated 
protocols

simple 
protocols

MAC
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http://www.ecrypt.eu.org/lightweight/
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Conclusions
• Major challenges remain in cryptographic 

algorithm design
• Lightweight crypto has many dimensions

– no single optimal solution for RFID, sensor nodes, 
co-processor for 8-bit CPU,…

– pushing the edge for all aspects
• Symmetric crypto with less than 1000 gates is 

feasible
• Public key crypto with less than 15,000 gates 

is feasible
• Side channel resistance remains a challenge


