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STREAM CIPHERS

• (1) Definition
• (2) Basic types
• (3) Modes of operation
• (4) Practical security of keystream generators
• (5) Keystream generators based on LFSR’s
• (6) Other types of keystream generators
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(1) Definition 
( )∞

== 0ttxx   – binary plaintext sequence 

( )∞
== 0ttyy   – binary ciphertext sequence 

( )∞
== 0ttSS   – M-bit internal state sequence 

K –  k-bit secret (session) key 
R –  r-bit randomizing (message) key 

( )RKS ,0    –   initial state 

{ } { }MM
KF 1,01,0: 1 →+  –   next-state function 

{ } { }1,01,0: →M
Kf  –   output function 
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• General binary stream cipher decipherable 
without delay is an invertible nonautonomous 
finite-state machine with one input and one 
output: 
− encryption (sequential) transform: yx a  

( ) 0        ,,   1 ≥=+ txSFS ttKt  
( ) 0        ,     ≥⊕= tSfxy tKtt  

− decryption transform: xy a  
( )( ) 0         ,,    1 ≥⊕=+ tSfySFS tKttKt  

( ) 0         ,     ≥⊕= tSfyx tKtt  

− encryption/decryption transforms are defined 
by keystream sequence ( ) ( )( )∞

=
∞
= == 00 ttKtt Sfzz  

which depends on K, R, and possibly on x 
    ttt zxy ⊕=  
    ttt zyx ⊕=  
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• Basic criteria
− implementation: keystream sequence easy to

compute if K, R, and x are known
− practical security = keystream unpredictability:

keystream sequence infeasible to compute
from known keystream portions if K is unknown
(known- plaintext scenario)

− key size k large enough to prevent exhaustive
search, e.g., ≥ 100
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− no theoretical secrecy: unicity distance 

    
H

knu −
≈

1
 

where H is entropy of x per bit ( )1≤H  

− randomizing key R enables resynchronization, 
that is, repeated use of the same secret key: 
− may be known (transmitted in the clear) 
− r large enough to ensure that R is not 

repeated with high probability (e.g., 32≥r ); 
more precisely, m

r
#   2 2 ≥   where  #m  is the 

number of messages (birthday paradox) 
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− insensitive to substitution errors, as current ciphertext bit 
depends on current plaintext bit only and vice versa (not good 
for authentication purposes) 

− sensitive to synchronization errors 
− change K  frequently, without using R 
− use R, transmitted in the clear before encryption; use 

reinitialization algorithm to generate ( )RKS ,0  with property 
( ) ( )RKSRKSRR ′′≠′⇒′′≠′ ,,    00  

− One-time-pad assumption: for any K, the probability that tS  is 
repeated is very low (long segments of plaintext should not be 
encrypted by the same keystream!) 
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− insensitive to substitution and synchronization 
errors, that is , propagation of such errors in 
ciphertext is limited to only 1+M  plaintext bits 
(self-synchronizing property) 

− practical security: feedback function Kf  
infeasible to compute if K is unknown (number 
of inputs to Kf  must be large) 
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• Stream cipher with plaintext memory (SCPM): 
( )ttK xSF ,  effectively depends on tx  in such a 

way that both encryption and decryption 
transforms have infinite input memory 
− sensitive to both substitution and 

synchronization errors 
− potential for authentication purposes, but each 

plaintext bit affects only current and 
subsequent ciphertext bits (trivial attack) 



Jovan Golic,  Copyright 2008 13

− if R is not used and K is repeated, the same
plaintext sequences are encrypted into the
same ciphertext sequence

− R can be prepended to message and then
encrypted

− rarely treated in open literature (PKZIP)
− can be used to construct block ciphers and

(keyed) hash functions    Golić  2000
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• Conversion: Keystream Generator → SCPM
– Introduce plaintext bit into next-state function of 

keystream generator so as to achieve propagation 
effect, i.e., its change should result in a random-looking 
change of subsequent keystream sequence

– Easy to achieve, since in keystream generators, change 
of any initial state bit should result in a random-looking 
change of keystream sequence

• Conversions: SCPM → (keyed) hash function, 
SCPM → self-synchronizing stream cipher,   
SCPM → block cipher, Golić 2000

(3)  Modes of operation
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• Conversion: SCPM → keyed hash function
– Use SCPM with secret key K 
– Plaintext sequence for SCPM: m-bit input to hK, 

lM-bit all-zero input (M ≥ n is internal memory 
size of SCPM)

– Output of hK: last n ciphertext bits of SCPM, 
after m+lM clocks (e.g., l=3)

– Security: at least as secure as SCPM
– Variable message length, no padding
– Also: encryption + hashing, with the same key
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• Conversion: SCPM → block cipher
– Product or cascade connection of three SCPM's
– Plaintext sequence for 1. SCPM: n-bit input to EK
– Plaintext sequence for 2. SCPM: reversed n-bit 

output of 1. SCM
– Plaintext sequence for 3. SCPM: reversed n-bit 

output of 2. SCM
– Output of EK: n-bit output of 3. SCPM
– Security: cascade at least as secure as SCPM, 

product at least as secure as SCPM w.r.t. secret 
key reconstruction related key attacks

– Variable block size
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(4) Practical security of keystream generators 
• Basic criterion: keystream unpredictability 
• Equivalent to keystream randomness: 

computationally infeasible to distinguish 
keystream sequence from purely random 
sequence 

• Derived criteria: 
1°- long period of keystream sequence for 

(almost) all initial states 
2°- negligible fraction of equivalent initial states 

(producing the same keystream sequence) 
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3º -  good ‘long term’ randomness:
− relative frequencies of patterns over a

period are very close to corresponding
expected values on a purely random
sequence; e.g., Golomb’s postulates
involving distribution of single bits,
distribution of runs (gaps and blocks), and
autocorrelation function); also, distribution
of block patterns of bits
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4º -  good ‘short term’ randomness: keystream      
       sequences pass known statistical tests on  
       lengths of practical interest; used statistics  
       typically follow  2χ  or normal distribution 
       when computed on a 2χ   purely random  
       sequence 

− frequency test: single bits 
− serial test: 2-bit overlapping block patterns 
− poker test: m-bit non-overlapping block 

patterns 
− runs test: gaps and blocks of varying length
− autocorrelation test: frequency test on 

bitwise sums of keystream sequence and its 
phase shifts 
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− repetition test: number of repeated non-
overlapping m-bit block patterns
Gustafson, Dawson, Golić 1995;  follows
Poisson distribution; allows twice as long
block patterns to be tested

− Maurer’s universal test: essentially
estimates entropy of keystream sequence
through a universal data compression code

− instead on block patterns, statistical tests
can be applied on functions of block
patterns, but the corresponding distributions
are no longer uniform
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5º - high complexity measures w.r.t. elementary  
        keystream generators adapted to keystream  
        generator under consideration, that is, the  
        minimum size of such an elementary  
        keystream generator that can produce the  
        same keystream sequences, for example: 

−  linear complexity, w.r.t. linear feedback shift 
registers (or nonlinear complexity) 

−  2-adic complexity, w.r.t. feedback with carry 
shift registers      Klapper, Goresky 1997
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6º -  Immunity to initial state reconstruction  
       cryptanalytic attacks or more generally,  

to secret key  reconstruction attacks 
− ideally, attacks more effective than exhaustive 

search of secret keys should not exist, e.g., 
divide-and-conquer secret key reconstruction 
attacks 

− realistically, secret key reconstruction attacks 
should not be computationally feasible
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Examples of attacks:
- Correlation attacks
- Fast correlation attacks
- Conditional correlation attacks
- Vectorial fast correlation attacks
- Linear cryptanalysis (LSCA method)
- Linear statistical distinguishers (linear models)
- Time-memory-data tradeoff attacks
- Linear consistency attacks
- Inversion attacks
- Branching attacks
- Guess-and-determine attacks
- Embedding and probabilistic correlation attacks on  clock-
controlled LFSR’s
- Edit-distance and edit-probability correlation attacks on clock-
controlled combiners
- Fast correlation attacks on clock-controlled LFSR’s
- Resynchronization attacks
- Algebraic attacks
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(5)  Keystream generators based on LFSR’s

• Use LFSR’s with long period and good statistical
properties, but low linear complexity, and destroy
linearity, that is, achieve keystream
unpredictability by:
− nonlinear combining functions, memoryless or

with memory
− irregular clocking
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− length: r stages (delay elements) 
− initial state: ( )110 ,...,, −rsss  

− linear recursion: ∑
=

− ≥=
r

i
itit rtscs

1
       ,  

     (binary sum, mod 2) 

− output sequence: ( )∞
== 0ttss  

− feedback (connection) polynomial: ( ) ∑
=

+=
r

i

i
iDcDf

1
1  

− characteristic polynomial: ( ) ∑
−

=
− +=

1

0

r

i

ri
ir DDcDh  
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• Properties
(1) Period: s periodic iff ( )( )rDfcr == deg  1

 (nonsingular LFSR)

− Per ( ) ( ){ }iDDfNiiDfs +∈= 1  ,   minexp  

− irreducible ( )Df   ⇒  Per ( )Dfs exp=  for
  nonzero initial states

− primitive ( )Df   ⇒  Per 12 −= rs  for nonzero
  initial states (maximum-

                                            length sequence,
                                            m-sequence)
                                      ⇒  12 −r  maximum-length
                                            sequences are phase
                                            shifts of each other, i.e.,
                                            lie on the same cycle
                                            of length 12 −r
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(2)   Good ‘long term’ randomness properties of   
           maximum-length sequences: 

− almost uniform distribution of (overlapping) patterns of length 
smaller than r 

− satisfy Golomb’s postulates 
− 12 −r  1’s and 12 1 −−r  0’s 

− for 22  ,21 −−−≤≤ lrrl  blocks and 22 −−lr  gaps of length l; one 
gap of length 1−r ; one block of  length r 

− out-of-phase autocorrelation function:  
12

1
−

− r  
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(3)  Empirically good ‘short term’ randomness 
properties of maximum-length sequences, on 
reasonably long segments 

(4)  ‘Bad’ property: predictability, that is, LFSR 
sequence is easily reconstructed from r 
consecutive bits if feedback is known, and from 
2r consecutive bits if feedback is unknown 

 (5)  Easy for hardware implementation, not so easy 
for software implementation (especially if number 
of nonzero terms (weight) of ( )Df  is not low) 
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• LFSR over ( )n2GF  

• Linear congruential generator: LFSR over n2
Z  

(addition and multiplication mod n2 ) 
• Nonlinear FSR 
 
 
 
 
 
 

nonlinear recursion: ( ) rtssfs rttt ≥= −−      ,,...,1  
nonsingular iff ( ) ( )111 ,...,,..., +−−−−− ⊕= rttrtrtt ssgsssf  

ts

f 
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• Feedback with carry shift register (FCSR)  
Klapper, Goresky 1997: specific nonlinear FSR 
whose feedback function has memory 

 
 
 
 
 
 
 
 
 

 
ts

Σ 1−tm  

1q 1−rq rq2q

2 div
2mod
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1
1

−
=

− += ∑ t

r

i
itit msqσ   (integer sum) 

2modtts σ=  

⎣ ⎦2ttm σ=  

− connection integer: ∑
=

+−=
r

i

i
iqq

1
21  

− Per 1−= qs  iff q is a prime such that 
multiplicative order of 2 modulo q is 1−q   
(2 is a primitive element in }1 ..., 2, {1,   Z q-q =∗ ) 

− Good ‘long term’ randomness 
− Linearity w.r.t. addition and multiplication in the 

ring of 2-adic numbers 
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••LFSRLFSR’’s in s in FibonacciFibonacci configurationconfiguration ((describeddescribed))
••LFSRLFSR’’s in s in GaloisGalois configurationconfiguration

••More More suitablesuitable forfor software software implementationimplementation
••BetterBetter short short termterm statisticsstatistics

••LinearLinear cellularcellular automataautomata ((programmableprogrammable rulesrules))
••EquivalentEquivalent toto a set of a set of LFSRsLFSRs withwith correlatedcorrelated
initialinitial statesstates
••BetterBetter short short termterm statisticsstatistics
••Some Some attacksattacks are are renderedrendered more more difficultdifficult
••Design more Design more complicatedcomplicated
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Linear complexity

• Linear complexity, ( )sL , of a periodic finite field
sequence ( )∞

== 0ttss  is the length of the shortest
LFSR that generates s (this LFSR is unique)

• Linear complexity of a finite field string is the
length of the shortest LFSR that generates this
string (this LFSR need not be unique)

• Linear complexity of a keystream generator is the
length of the shortest LFSR that generates all
output sequences of this generator

• Linear complexity of a string of length n can be
computed by well-known Berlekamp-Massey
algorithm with complexity ( )2nO  symbol
operations
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   (1)   Regular clocking and memoryless  
           combining  function 
 
 
 
 
 
 
 
 

− f  balanced Boolean function 
− possibly, several outputs/taps from the same LFSR 

f

1LFSR  

1
ts

nLFSR  

n
ts

( )n
ttt ssfz ,...,1=
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        − nonlinear filter generator 
 
 
 
 
 
 
 
 

inputs to f defined by tapping sequence 

( )n
ii 1== γγ , rn ≤<<<≤ γγγ L211  

− memoryless combiner: iLFSR  are distinct and have 
single outputs, ni ≤≤1  

f

ts LFSR

1γ−ts

( )
nttt ssfz γγ −−= ,...,

1

nts γ−
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    (2)   Regular clocking and combining function 
with  memory 

 
 
 
 
 
 
 
 
 
 
 
 
 

1LFSR  

1
ts

nLFSR  

n
ts

tz

DELAY 

DELAY 

 
 
f 
 
 
 
 
 

F 
 

1+tStS
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− function with memory is a nonautonomous 
finite-state machine with n inputs and M bits of 
memory defined in terms of next-state function 
F and output function f 
    ( ) 0     ,,...,, 1

1 ≥=+ tssSFS n
tttt  

      ( ) 0     ,,...,, 1 ≥= tssSfz n
tttt  

where tS  is M-bit internal state vector and 0S is 
initial state 
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• Period and linear complexity are harder to control 
analytically 
− output sequence can be ultimately periodic 

rather than periodic, but its period is most likely
at least ( )nPP ,...,lcm 1  

− linear complexity is most likely very high and 
close to period 

• Nonlinear filter generator can be viewed as 
combiner with finite input memory of 1γγ −= nM  
bits 
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• Output statistics may be spoiled by internal 
memory (e.g., nonlinear filter generator, 
multiplexer generator); this is not so if 

( )nssSf ,...,, 1  is balanced for each S 
• Tradeoff between correlation immunity and linear 

complexity can be overcome by only 1 bit of 
memory Rueppel 1985 
− e.g., maximum order of correlation immunity, 

1−n , is achieved if 
 

( ) ( ) nn ssSgssSf ⊕⊕⊕= L11,...,,  
− e.g., summation generator with ⎡ ⎤n2log  bits of 

memory      Rueppel 1985 
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• Correlation properties      Golić 1992, 1996 
− one should consider correlation between linear 

functions of output and input bits or, more 
precisely, bitwise correlation between linear 
sequential transforms of output sequence and 
of input sequences 

 
 
 
 
 

z

( )zL
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− if F is balanced, then such a correlation necessarily exists on 
blocks of 1+M  consecutive output and input bits 

− linear sequential circuit approximation method for finding 
such correlations 

− to minimize correlation coefficients, M should not be small 

•Correlation attacks based on the Hamming
distance between linear transforms of input
and output sequences or on imbalanced linear

functions of input sequences when conditioned
on output sequence
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• Linear Statistical Distinguishers
Golić 1994, 1996
– There exist imbalanced linear functions of M+1 

consecutive output bits, assuming that initial 
state is uniformly distributed, for any keystream
generator with M bits of internal memory

– Resulting correlation coefficients are time-
invariant for balanced next-state functions; 
bounds for total correlation (sum of squares) are 
determined

– Equivalent representation by linear models, 
which can be derived for primitive components 
and then connected together



Jovan Golic,  Copyright 2008 44



Jovan Golic,  Copyright 2008 45

• LSCA method
– For finding linear correlations and linear models in 

autonomous or non-autonomous finite-state machines
– Linearization: Express output function and each 

component next-state function as a sum of a linear 
function and an imbalanced function (noise)

– Treat noise outputs as inputs to remaining Linear 
Sequential Circuit (LSC) and solve the circuit, e.g., by 
generating function method

– Linear correlations and linear models are defined by 
rational transfer functions

– Resulting correlation coefficients correspond to sums of 
noise functions and are time-invariant for balanced next-
state functions

– Find optimal linearizations, to maximize correlation 
coefficients
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(3)   Irregular clocking 
• Clock-controled shift registers 

 
 
 
 

− regularly clocked LFSR sequence ( )∞
== 0ttss  

− decimation sequence ( )∞
== 0ttdd , td  defining 

the number of clocks to be taken before tz  is 
produced (nonnegative) 

− output sequence ( )∞
== 0ttzz  is (nonuniformly) 

decimated LFSR sequence 

   0     ,
0

≥⎟
⎠
⎞

⎜
⎝
⎛= ∑

=
tdsz

t

i
it  

to obtain tz , 1−td  bits after 1−tz  are deleted 
from s if 1≥td , and 1−tz  is repeated if 0=td  

td
tz

CLOCK 
CONTROL LFSR  c  
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− decimation sequence is produced by
clock-control generator, which may be
composed of LFSR’s

− if D is the range of values of d, LFSR is said to
be D-clocked, e.g.,
− { }1,0 -clocking – stop/go clocking

− { }2,1 -clocking

− { }nm, -clocking

− [ ]1,1 +d -clocking – constrained clocking

− [ )∞,1 -clocking – unconstrained clocking
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• Clock-controlled memoryless combiners
– Combining Boolean function can be linear
– Examples: clock-controlled cascades, alternating

step generator, bilateral stop/go generator, A5
• Clock-controlled combiners with memory

– Most general keystream generators based on 
LFSR’s

– Combining function should be designed so as to
prevent (fast) correlation attacks when LFSR’s are 
clocked regularly

• Correlation attacks based on edit distances
and edit probabilities (divide-and-conquer)
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• Based on slowly-varying tables, such as RC4 
Rivest 1987
– Properties difficult to control
– Large internal state
– Efficient for software implementation (word-based)

• Based on iterated block ciphers
– Complex next-state function
– Possibly reduced number of rounds
– Properties difficult to control
– Multiple outputs so that speed may be comparable
– Much larger gate count in hardware implementations
– More difficult to cryptanalyze

(6)  Other types of keystream generators
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• Based on one-way functions Blum, Micali, Yao, 
Goldreich, Levin, Luby, Krawczyk, Håstad, Impagliazzo
– Next-state function essentially based on an one-way 

function, generic or concrete
– One-way functions are hypothetical objects
– Security reduction: any statistical weakness of 

keystream can be converted into an inversion attack
on one-way function (i.e., keystream generator is at 
least as secure as one-way function)

– Concrete properties difficult to control
– Very inefficient for software or hardware 

implementations
– In practice, a block cipher as a mapping from key to

ciphertext, for a fixed plaintext, may possibly be
used
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CORRELATION ATTACKS

1. Basic Correlation Attack
2. Fast Correlation Attacks
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   (1)   Regular clocking and memoryless  
           combining  function 
 
 
 
 
 
 
 
 

− f  balanced Boolean function 
− possibly, several outputs/taps from the same LFSR 

f

1LFSR  

1
ts

nLFSR  

n
ts

( )n
ttt ssfz ,...,1=
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• Correlation to linear functions 
− If ( )nxxl ,...,1  is a linear function, then the 

correlation coefficient between  f  an  l  is 
defined by 
( ) ( ) ( ) ( ) ( ){ } 1

2
1PrPr, 1 −==≠−== − XlXfXlflflfc n  

where ( )nxxX ,...,1=  

− ( ) ( )
2

,1Pr lfclf +
==  

− ( )∑ =
l

lfc 1,2   (Parseval’s theorem) 
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− f  is balanced iff ( ) 00, =fc  

− f  is statistically independent of ( )
mii xx ,...,

1
 iff  f  

is statistically independent of every nonzero  
( )

mii xxl ,...,
1

 (i.e., ( ) 0, =lfc ) 

− it follows that if  f  is m-th order correlation 
immune, then ( ) 0, =lfc  for every nonzero 
linear function l of m (or less) input variables, 
and there exists l of 1+m  input variables such 
that ( ) 0, ≠lfc  

− if  f  is different from constants 0 and 1, then 
there exists nonzero linear function l such that 
( ) 0, ≠lfc  
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• Probabilistic model 
− Let ( ) 0, ≠= clfc , for  

( )
qq iiii xxxxl ⊕⊕= L

11
,..., , for some nq ≤≤1  

− Then the corresponding memoryless combiner 
can be modeled by 

 
 
 
 

LFSR

te

ts
tz
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− If feedback polynomials of involved LFSR’s are 
distinct, then LFSR feedback polynomial is their 
product 

− If in addition, te  and ts  are assumed to be 
statistically independent (true if  f  is balanced), 
then the model reduces to binary symmetric 
channel ( )pBSC  
 
 
 
 
where truncated LFSR sequences represent a 
(truncated cyclic) linear block code 

− If LFSR feedback polynomials are known, 
cryptanalytic problem is to reconstruct LFSR 
initial state from output segment of sufficient 
length N (divide-and-conquer) 

− This problem is then equivalent to decoding 
problem 

LFSR
ts

tz( )pBSC  
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− Basic correlation attack is equivalent to 
minimum distance decoding (for 2

1<p ): 

− guess LFSR initial state and compute 
Hamming distance between Ns  and Nz  

− accept guess if Hamming distance is 
minimal, or close to being minimal (Hamming
distance is around Np  for correct guess and 
around 2

N  for incorrect guess) 

− necessary keystream length: 

2
110

c

LL
N qii ++
≈

L
 

− computational complexity ⎟
⎠
⎞⎜

⎝
⎛ ++ qii LL

O
L12  
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2.  FAST CORRELATION ATTACKS

2.1  Probabilistic Model
2.2  Parity-Checks
2.3  Majority-Logic Error-Correction Algorithm
2.4  Probabilistic Error Correction
2.5  LFSR Sequence Reconstruction
2.6  Convergence Condition
2.7  Other Approaches
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2.7  Other Approaches
• Modified notation

– Correlation coefficients for error bits:  
prior and posterior

– Correlation coefficients for a parity check : 

– For a given , only multiplications are needed
– Parity-check value:
– Update expression (1) for orthogonal parity checks:

ii pc 21−= ii pc ˆ21ˆ −=
π

∏
≠∈

=
ijj

ji cc
,

)(
π

π

)(πs

)(21

)(1
)(1

1
1

ˆ1
ˆ1

π

π π
π

s

i

i

i

i

i

i

i
c
c

c
c

c
c

−

∏∈
∏ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
−

+
−

=
+
−

π )2(3 −π
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• Belief propagation
– Instead of direct recycling, probabilities are iteratively

updated according to

where

– For final decisions, products over all parity checks are used
– Number of required multiplications is only 3 times larger
– Better error-correction capability, as information contained in 

parity checks is better used

)(21

\
)1(

)1(

)(
,

)(
,

)(1
)(1

1
1

ˆ1
ˆ1 π

πππ

π

π
π

′−

∏∈′
−

−

∏ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
′+
′−

+
−

=
+

−
s

k
i

k
i

i

i
k

i

k
i

i c
c

c
c

c
c

∏
≠′∈

−
′

− =′
ijj

k
j

k
i cc

,

)1(
,

)1( )(
π

ππ
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• Approximate iterative Hartmann-Rudolph algorithm
[Golić 2001]

– Hartmann-Rudolph algorithm used for optimal symbol-by-
symbol (soft-decision) decoding

– Novel expression for updating probabilities

where is the clipping function
– Better for non-orthogonal parity checks, for example, when

large parity-check weights have to be used
– Convergence condition
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• One-step decoding algorithms
– For reliable decisions on individual bits, it is required that

(capacity argument)

– For reliable decisions on    -tuples of bits, parity checks with
concentrated terms should be used, and  [Chepyzhov et al. 2000]

• Guess a number of bits
– A fixed set of     bits are guessed and parity checks with

concentrated terms should be used
– Iterative probabilistic decoding can be applied

[Mihaljević et al. 2000]

• Both approaches require precomputation of parity checks
– LFSR length is effectively reduced by
– Computation complexity increases times
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• Parity checks with memory
– Parity checks with concentrated terms which can be shifted

along the sequence
– Precomputation is required to find these parity checks: typically, 

with time-memory tradeoff techniques time and/or storage
complexities are at least where is LFSR length

– Parity-check values can be viewed as received codeword bits
for a convolutional code: each parity check when shifted along
the sequence yields one codeword sequence
[Johansson, Jonnson 1999]

– Parity-check weight is effectively reduced!
– Computation time and memory (RAM) complexities are 

proportional to
– One-step Viterbi decoding or iterative probabilistic decoding for

convolutional codes
– Specialized iterative probabilistic decoding [Golić 1999]
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• Reconstruction of linear polynomials
– For a primitive LFSR polynomial, keystream bits can be

viewed as outputs of a Boolean function whose inputs
are defined by coefficients of linear functions
expressing LFSR output bits as functions of initial state

– LFSR bits are then obtained as a linear function, 
defined by the initial state, of the same inputs

– Method from [Johansson, Jonnson 2000] is essentially
not related to the algorithm for reconstructing linear
polynomials [Goldreich, Rubinfeld, Sudan 1998]

• Tradeoffs in precomputation
– [Golic 96]: degree , complexity
– [Wagner 02]: degree , complexity
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• Vectorial fast correlation attacks
– [Golic 02,05] evaluate and iteratively update posterior

probabilities for vectors of LFSR bits simultaneously
– use Fast Fourier Transform
– application to nonlinear filter generator and combiners

with or without memory
• Fast correlation attacks on clock-controlled

shift registers
– [Golic 95]: special parity checks; evaluate and 

iteratively update posterior probabilities for the number
of bits deleted at a time  

– [Golic 01]: estimation of posterior probabilities for bits in 
regularly clocked LFSR; time-varying BSC

– Computation complexity (?)
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Time-Variant Binary Symmetric Channel

• Problem: Probabilities of input bits given the output
• Applications: soft decoding, fast correlation attacks

(one-step or iterative)
• Approximations for low-weight orthogonal parity checks
• Solution: Hartmann, Rudolph - IEEE Trans. Inform. 

Theory 1976 (exact expression)

OutputInput
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Noise
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Memoryless Combiner

• LFSR initial states are chosen uniformly at random

Out

LFSR1

LFSRN

f
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More Generally

• Inital state is chosen uniformly at random

Out
f

LINEAR 
SEQUENTIAL

CIRCUIT
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Mathematical Model

• For inputs/codewords, there are              
independent linear relations/parity checks

• For memoryless combiner, parity checks include 
LFSR recurrences and bit repetitions
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Problems

• Determine exact analytical expressions for:
– Probabilities of linear functions of output bits
– Probabilities of subvectors of output bits
– A posteriori probabilities of linear functions of 

input bits, given the output sequence
– A posteriori probabilities of subvectors of input 

bits, given the output sequence
• Codewords are chosen uniformly at random
• Combining Boolean functions are balanced
• Golić - IEEE Trans. Inform. Theory, Nov. 2007
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Previous Work
• Use of BSC model and correlations between f and 

linear functions (correlations)
– Basic correlation attack, single correlations

Siegenthaler ‘84, ‘85
– Iterative fast correlation attack, single correlations

Meier, Staffelbach ‘88, ’89,  Zeng, Huang ‘88
– One-step fast correlation attack, multiple correlations, 

nonlinear filter generator Johansson, Jönsson ‘02 (LILI-128)
• Use of probabilities of linear functions of input bits

that are significantly different from 0.5, when
conditioned on the output sequence
– nonlinear filter generator, due to repetitions of input bits

Anderson ‘94
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Previous Work (2)

• Use of combining Boolean function f and hence
multiple correlations to all linear functions, 
repetitions of input bits not considered
– Nonlinear filter generator, probabilities of individual

input bits, approximation for low-weight orthogonal
parity checks, one-step algorithm or iterative update
by using BSC model, Leveiller, Zémor, Guillot, 
Boutros ‘02; related linear statistical distinguisher
Molland, Helleseth ‘04

– Probabilities of input vectors, approximation for low-
weight orthogonal parity checks, one-step algorithm or 
vectorial iterative update Golić, Hawkes ‘02,‘05
(independently)
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Preliminaries

• Problems more difficult than for BSC model
• All problems can be solved mathematically
• Walsh-Hadamard transform of Boolean function
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Preliminaries (2)

• Fourier transform of probability distribution
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Some Solutions

• Correlation coefficient of output linear function
,

• Support of vector v:                     ,
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Some Solutions (2)

• A posteriori correlation coefficient of input 
linear function
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Binary Symmetric Channel

• Noise correlation coefficient
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Binary Symmetric Channel (2)

• A posteriori subvector probability distribution

• Chepyzhov, Johansson, Smeets 2000 one-step fast 
correlation attack is not statistically optimal (left term
missing)
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Applications

• By selecting low-weight parity checks, novel, 
computable expressions can be obtained

• Generality: arbitrary LFSR polynomials, non-
orthogonal parity checks, repetitions of input 
bits, other linear dependences among input bits

• Usage:
– Statistical distinguishers
– One-step fast correlation attacks, for linear functions

or subvectors of input bits
– Iterative fast correlation attacks, new expressions for

updating the underlying correlation coefficients
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Applications (2)

• Statistical distinguishers:

• Iterative fast correlation attacks:

- set of supports of dual codewords s.t.
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Introduction

• Objective:  Reconstruct secret key by manipulating and 
solving underlying algebraic equations

• Linearization Algorithm:  Replace monomials by new 
variables and solve the linear system if number of 
equations is sufficiently large; necessary that equations
have low algebraic degree

• XL Algorithm [SPCK00]: Generate new equations by
multiplying original equations by monomials of bounded
degree and then apply linearization algorithm; necessary
that original system is overdefined
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Application to Block Ciphers

• Find low-degree algebraic equations for nonlinear 
components (S-boxes) and apply XL algorithm

• Exploit sparseness of resulting equations [CP02]

• Alternatively, use Gröbner basis algorithms
• Complexity grows polynomially with number of 

rounds
• Effectiveness is limited due to large number of 

new variables and possible linear dependences
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Application to Stream Ciphers

• Assume that keystream is produced by applying a 
Boolean function to an autonomous linear finite-state 
machine (e.g., memoryless combiners or combiners with 
finite input memory such as nonlinear filter generator)

• Find (induced) low-degree algebraic equations for this 
Boolean function [CM03]

• Express input variables as linear functions of secret key, 
for each keystream bit; algebraic degree is preserved

• Apply linearization algorithm, for a sufficiently long 
keystream [PF-S00]
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Induced Algebraic Degrees

• Boolean functions [CM03]:  for k variables, there exists 
an equation of degree at most

• Combiners with memory [AK03]:  for a binary combiner 
with k inputs and l bits of memory, there exists an 
equation over l+1 consecutive k-bit inputs of degree at 
most                     , when conditioned on  l+1 consecutive 
output bits 

• Combiners with m outputs [C04]:  there exists an 
equation over                   consecutive inputs and outputs 
of degree at most                              in input bits 

⎡ ⎤2/k

⎡ ⎤2/)1( +lk

⎡ ⎤ml /)1( +
⎡ ⎤⎡ ⎤2//)1( mlk +
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Fast Algebraic Attacks

• For a Boolean function of k variables, if e+d ≥ k, then 
there exists an equation over input and output variables 
of degree at most d in input variables such that the 
monomials whose degrees in input variables are larger 
than e do not depend on output variable [C03]

• Monomials with highest degrees in input variables can 
be eliminated from equations by using stream cipher 
linear complexity properties (pre-computation 
complexity reconsidered in [HR04])

• Algebraic degree effectively reduced to at most e
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Induced Algebraic Equations [G06]

• Objective: study algebraic equations induced by a 
vectorial Boolean function f, i.e., by equation  f(X,Y) = Z

• An algebraic equation is specified by a (non-zero) 
Boolean function, defined by a multivariate binary 
polynomial (algebraic normal form), required to be equal 
to zero on a subset of input values (e.g., determined by 
known Z)

• Conditional scenario: Z is fixed and algebraic equations 
involve only X

• Unconditional scenario: Z is variable and algebraic 
equations involve both  X and  Z

• Divide-and-conquer: Y has to be eliminated 
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Mathematical Foundations

• For any subset                , a non-trivial algebraic 
equation induced by     is an equation g(S)=0,      

,  where g is a non-zero multivariate 
polynomial in  S=(s1, …, sn)

• The set of all such g is a vector space, as it is 
closed under addition

• Algebraic equations of low degree are defined by 
polynomials of degree at most d

• They also form a vector space

{ }n1,0⊂S
S

S∈S
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Mathematical Foundations (2)

• Let        denote the set of all multivariate 
polynomials in n variables of degree at most d; 
any such polynomial can be characterized as a 
linear combination of all             monomials of 
degree at most  d

• Let            be a matrix whose rows and columns 
are indexed by the vectors from       and by the 
monomials from      ,  resp., with entries defined 
by evaluating the monomials on these vectors

d
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Mathematical Foundations (3)

• For any                 , there exists a non-trivial 
algebraic equation on      iff

• For any                 and           , g defines a non-
trivial algebraic equation on      iff the columns of  

corresponding to the monomials in  g add 
up to zero

• For any                , there exists a            that 
defines a non-trivial algebraic equation on     if

||
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Basic Algorithm

• If the binary coefficients defining any             as a linear 
combination of all             monomials of degree at most d
are represented as a binary one-column matrix C, then 
the vector space of all algebraic equations induced by     
can be obtained by solving the system                           
of linear equations in C, e.g., by Gaussian elimination

• Time complexity:

• Space complexity: 

• Dimension: 
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Other Algorithms

• Polynomials defining induced algebraic equations form 
an ideal in the ring of binary multivariate polynomials

• Gröbner basis algorithms may be useful for finding 
induced algebraic equations of low degree, as low-degree 
elements of a basis may yield low degree polynomials 
via (polynomial) linear combinations

• For a Boolean function, multivariate polynomial 
interpolation algorithm [ACGKMR06]; time complexity

• If equations are allowed to hold with high probability 
instead of certainty, are there more efficient algorithms?
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Conditional Algebraic Equations

• Conditional scenario: Given a vectorial Boolean 
function  Z = f(X,Y), find algebraic equations over  X  
when Z is assumed to be fixed and known 

• Variables in  Y should be eliminated
– To eliminate internal memory (explosion of variables)
– To achieve divide-and-conquer effect 

• This scenario is interesting for the cryptanalysis of 
stream ciphers in the known keystream sequence 
scenario, provided that  f is used as an output function 
producing a binary keystream sequence from an internal 
state sequence generated by a next-state function

• Sufficient conditions in [Golić, “Vectorial Boolean functions 
and induced algebraic equations,” IEEE IT, 2006]
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Unconditional Algebraic Equations

• Unconditional scenario: Given a vectorial Boolean 
function Z = f(X,Y), find algebraic equations over  X, Z  
(variables in  Y should be eliminated)

• This scenario is interesting for the cryptanalysis of block 
and stream ciphers where  f is an internal function 
whose output is unknown, e.g., corresponding to an 
intermediate round of a product block cipher or to an 
intermediate stage of an iterated construction of an 
output function in a stream cipher

• Sufficient conditions in [Golić, “Vectorial Boolean functions 
and induced algebraic equations,” IEEE IT, 2006]
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Constrained Unconditional Algebraic
Equations

• Constrained unconditional scenario: Given a vectorial
Boolean function Z = f(X,Y), find algebraic equations 
over  X, Z  having any degree in  Z such that the 
monomials with the highest degrees in  X do not depend 
on  Z  (variables in Y should be eliminated)

• This scenario is interesting for fast algebraic attacks, as 
high-degree monomials in  X may be eliminated by 
using linear complexity properties of the corresponding 
stream cipher

• Sufficient conditions in [Golić, “Vectorial Boolean functions 
and induced algebraic equations,” IEEE IT, 2006]
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Combiners with Memory
• In all three scenarios, various sufficient conditions for 

the existence of induced algebraic equations are derived, 
thus generalizing previously known results 

• Importance of the range of vectorial Boolean function
• Finite input memory (e.g., nonlinear filter generator) 

can considerably reduce the degree of induced algebraic 
equations

• A divide-and-conquer effect, especially for multiple 
binary outputs, can significantly reduce the complexity 
of algebraic attacks
– For example, for combiner with  k  LFSRs and m outputs, 

2≤m≤k, any subset of at most m-1 LFSRs can be eliminated, 
regardless of how many outputs are used in each LFSR
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Algebraic Immunity Order
• Consider a vectorial Boolean function                            ,  

; let                     , where   fz is the range of  f 
• Let  X' denote a generic subset of variables in  X of size        

and let               denote the subset of the
remaining variables in  X having size  

• We can then write                               and consider 
algebraic equations involving  X’ that are induced by f

• There are no induced (conditional) algebraic equations 
over  X’ for any Z  iff for each fixed value of  X’, the set 
of values of                        for all values of           
equals  fz [G05,06]

{ } { }mnf 1,01,0: →
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)\,( XXXf ′′ XX ′\
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Algebraic Immunity Order (2)
• The maximal              such  that this property 

holds for every  X’ is called the algebraic 
immunity order of  f ; if                , then it is 
called the algebraic resiliency order [G05,06]

• Generalization of correlation immunity/resiliency 
order, where                      is considered as 
multiset, i.e., distribution of output values matters

• , not smaller than correlation immunity order
• There are no induced (unconditional) algebraic equations 

over  X’, Z  iff for each fixed value of  X’, the set of output 
values of                      for all values of            equals
[PZG05]     

)\,( XXXf ′′

{ }m
zf 1,0=

)\,( XXXf ′′ XX ′\ { }m1,0

|| Xk ′=

fmnk −≤
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Induced Algebraic Degree Profile
• For each  k +1 ≤ i ≤ n, we can find the minimal degree, 

di, of induced non-trivial algebraic equations over all 
subsets  X’ of size i and over all output values  Z

• The resulting non-increasing sequence               can be 
called the induced algebraic degree profile of  f

• The minimal value, dn, can be called the induced 
algebraic degree of  f and denoted as df , which is also 
known as algebraic immunity [MPC04]

• df is smaller than or equal to the minimal d such that 
• For mf = 1,                 [CM03] 
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Some Criteria for Cryptographic Functions
• Algebraic immunity order should be close to the 

maximum, 
• Induced algebraic degree should be close to the 

maximum, which is the minimum d  such that

• Induced algebraic profile            should not be 
too flat; namely, induced algebraic equations 
involving less terms could have higher degrees

• New research problems
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