
Hashing and sponge functions Part 2: What we built and how we did it

Hashing and sponge functions
Part 2: What we built and how we did it

Joan Daemen1

Joint work with
Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1

1STMicroelectronics 2NXP Semiconductors

NISNet Winter School,
Finse

May 26, 2011

1 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

2 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Some history

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

3 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Some history

The beginning

The early years

Subterranean: Daemen (1991)
hashing mode: Subhash
stream cipher mode: Substream
permutation-based, hardware oriented

StepRightUp: Daemen (1994)
hashing and streaming modes
permutation-based, software oriented

Panama: Daemen and Clapp (1998)
improved version of StepRightUp
stream cipher mode unbroken till today
hash mode broken in 2002 by Rijmen et al.

4 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Some history

Setting up the team

From Panama to RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
forming of Keccak Team
adopting the principles underlying Panama

RadioGatún(2006)
more conservative than Panama
belt-and-mill structure
variable-length output
expressing security claim non-trivial exercise

Sponge functions (early 2007)
solution to security claim expression

5 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Some history

Keccak

From RadioGatún to Keccak

RadioGatún confidence crisis (2007-2008)
experiments did not inspire confidence in RadioGatún
follow-up design Gnoblio went nowhere
NIST SHA-3 deadline approaching …
U-turn: design a sponge with strong permutation f

Keccak (2008)
6 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

7 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

Desired properties of f

Efficiency and flexibility
fast and compact, straight and hardened
…on a wide range of CPU platforms and in hardware

Classical LC/DC criteria
absence of large differential propagation probabilities
absence of large input-output correlations

infeasibility of the CICO problem
Immunity to

integral cryptanalysis
algebraic attacks
slide and symmetry-exploiting attacks
…

8 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

The CICO problem

The CICO problem

Given partial input and output, determine remaining parts

Important in many attacks

Pre-image generation in hashing

9 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

The CICO problem

The CICO problem

Given partial input and output, determine remaining parts

Important in many attacks

State recovery in stream encryption

10 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

Differential propagation

Goal: prevent control over difference propagation

Differential (A, B) is composed of trails Q from A to B:

#pairs(A, B) = ∑
Q∈(A,B)

#pairs(Q)

wr(Q): number of conditions Q imposes on its pairs:

wr(Q) = ∑
active S-boxes

wr(qi, qo)

If wr(Q) < b : #pairs(Q) ≈ 2b−wr(Q), else few or no pairs
Ambition is to assure:

∀Q : wr(Q) > b: wide trail strategy
absence of systematic clustering of trails

11 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Criteria for the permutation f

Mask propagation

Goal: avoid large input-output correlations

Correlation (v, u) is composed of trails Q to u from v

C(v, u) = ∑
Q∈(v,u)

C(Q)

Correlation contribution: C(Q) = (−1)sign(Q)2−wc(Q)/2 with

wc(Q) = ∑
active S-boxes

wc(qi, qo)

If wc(Q) > b, Q contributes very little
Ambition is to assure:

∀Q : wc(Q) > b: wide trail strategy
absence of systematic clustering of trails

12 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

13 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Designing the permutation f

Required width b:
long term: security strength up to 256 bits
capacity up to 512 bits
rate: b − 512 bits
width ranges from 600 to 2400 bits

Like a block cipher
sequence of identical rounds
round function that is nonlinear and has good diffusion

…but not quite
no need for key schedule
round constants instead of round keys
inverse permutation need not be efficient

14 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Abandon Panama building blocks?

The obvious choices

ARX
appears very powerful, but …
unsuited for dedicated hardware and DPA protection
hard to evaluate strength
all of the MD4 and SHA family is already based on ARX

Square-inspired, like Rijndael (AES)
S-box with optimum worst-case LC and DC properties
mixing layer with optimum worst-case diffusion: MDS
transposition layer with optimum dispersion
results in strong bounds for trail weights
let’s try it!

15 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Inspiration from AES

AES-based approach: size parameters

AES structure must be scaled up from 128 to 600-2400 bits
Three size parameters:

S-box width: n bits
MDS width: m S-boxes
Dimension: d

Permutation width: b = mdn

AES: n = 8,m = 4, d = 2

16 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Inspiration from AES

Scaling up AES structure

Increase S-box width n?
software: # elements in lookup tables: 2n

hardware: strong increase in # gates
decreasing S-box width would be a better idea …

Increase MDS matrix size m?
SW with T-tables: size of elements is nm
HW and compact SW: strong increase in # operations/gates

Increase the dimension d?
slows down diffusion
strong increase in number of rounds

All in all, scaling up appears very expensive

17 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Inspiration from AES

A greedy aspect in AES-inspired design

Choice of nonlinear layer
for given width n, choose S-boxes
with optimum worst-case nonlinearity
irrespective of implementation cost

Choice of mixing layer
for given size m, choose mixing transformation
with optimum worst-case diffusion
irrespective of implementation cost

Focus on worst-case LC/DC propagation over few rounds

Excellent choice for T-table based implementations

Can be costly in other types of implementations

18 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Choices for the permutation f

Back to the Panama building blocks

Stick with the less greedy approach

A modest nonlinear layer
no requirement for high worst-case nonlinearity
− log(DP(a, b)) ≈ O(HW(a))
− log(C2(v, u)) ≈ O(HW(u))

A modest mixing layer
no requirement for high worst-case diffusion
average diffusion preferably high

A matching transposition layer should prevent
chaining of low-weight structures into narrow trails
clustering of trails

Ambition: cheaper round function, more rounds but
globally more efficient

19 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

20 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Keccak

Keccak

Instantiation of a sponge function
variable-length input and output
10∗1 padding

Keccak uses a permutation Keccak-f
7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}

Security-speed trade-offs using the same permutation

All values c and r with c + r = b supported
Examples

SHA-3: r = 1024 and c = 576 for 2c/2 = 2288 security
lightweight: r = 40 and c = 160 for 2c/2 = 280 security

21 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
state

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
slice

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
lane

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
row

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
column

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
plane

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The state and its parts

The state: an array of 5 × 5 × 2ℓ bits

x

y z
sheet

5 × 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)
(5 × 5)-bit slices, 2ℓ of them
7 widths b

22 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The nonlinear mapping χ

χ, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Small number of operations per bit

Algebraic degree 2, inverse has degree 3

LC/DC propagation properties easy to describe and analyze

23 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The nonlinear mapping χ

Comparing χ with AES S-box

Particular criterion:

X-axis: Hamming Weight HW(a)

Y-axis: given HW(a), minimum weight: log2(1/DC(a, b))

0

20

40

60

80

100

0 20 40 60 80 100 120

Chi 5-bit

AES S-box

AES-like 4-bit

24 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

θ′ , a mixing layer

θ′, a mixing layer

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z

+ =

column parity θʹ effect

combine

25 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

θ′ , a mixing layer

Diffusion of θ′

θʹ

θ′ is linear:
B = θ′(A)
vTa = uTb with v = θ′T(u)

Good diffusion?
input bit propagates to eleven output bits
output bit depends on eleven input bits

26 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

θ′ , a mixing layer

Inverse of θ′

θʹ

Similar to θ′ itself
bit at output propagates to eleven bits at input
input bit depends on eleven output bits

27 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Inter-slice dispersion with ρ

ρ for inter-slice dispersion

Motivation:
χ makes bits within rows interact
θ linearly mixes between rows in a slice
we need diffusion between the slices …

ρ: cyclic shifts of lanes with offsets:

for 0 ≤ i < 25 : i(i + 1)/2 mod 2ℓ

Offsets cycle through all values below 2ℓ

28 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Inter-slice dispersion with ρ

ρ In Keccak-f

Lanes are translated (cyclically) by different amounts

Moves bits of a slice to different slices

Translation-invariant in the direction of the z-axis
29 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Inter-slice dispersion with ρ

An initial attempt at Keccak-f

Round function: R = ρ ∘ θ′ ∘ χ

Repeat R until all trails have sufficient weight
But …

all-0 state is a fixed point of R
all-1 state too

In general:
let α be a fixed point of θ′ ∘ χ
then the state value with all slices = α is a fixed point

Problem: symmetry

30 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Asymmetry with ι

ι to break symmetry

XOR of round-dependent constant to lane in origin
Without ι, the round mapping would be symmetric

invariant to translation in the z-direction
advantage in analysis: Matryoshka structure

Without ι, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

31 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Asymmetry with ι

Another attempt at Keccak-f

Round function: R = ι ∘ ρ ∘ θ′ ∘ χ

Problem: low-weight periodic trails by chaining:

θʹ ρ

χ: may propagate unchanged
θ′: propagates unchanged, because all column parities are 0
ρ: in general moves active bits to different slices …
…but not always

32 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Asymmetry with ι

The cause of this problem

Weak worst-case diffusion in θ′
two-bit difference/mask within column remains as is
(column-parity) kernel: subset of states with all cx,z = 0
state values in kernel are invariant under θ′

Weak worst-case dispersion of ρ

ρ should move bits in a column to 5 different columns
this is impossible for lane size 4 and smaller

Affects security of Keccak-f[b] with b ∈ {25, 50, 100}
Why bother?

33 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

The Matryoshka property

The Matryoshka property

θʹ ρ

θʹ ρ

Structure Q for w = 2ℓ implies symmetric Q′ for w = 2ℓ+n

Patterns in Q′ are z-periodic versions of patterns in Q
Weight of trail Q′ is 2n times that of trail Q

34 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Intra-slice transposition with π

π for disturbing horizontal/vertical alignment

ax,y ← ax′,y′ with
(
x
y

)
=

(
0 1
2 3

) (
x′
y′

)
35 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Intra-slice transposition with π

Yet another attempt at Keccak-f

Round function: R = ι ∘ π ∘ ρ ∘ θ′ ∘ χ

Solves problem encountered before:

θ ρ π

π moves bits in same column to different columns!

One more change though: tweaking θ′

36 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Improving θ

Tweaking θ′ to θ

θ

Add to ax,y,z column parities cx−1,z and cx+1,z−1
Diffusion from single-bit input similar to that of θ′

but …

37 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Improving θ

Inverse of θ

θ

Diffusion from single-bit output to input very high

Output leading to low-weight input implies specific parity

Increases resistance against LC/DC and algebraic attacks

38 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Keccak-f summary

Keccak-f summary

Round function:

R = ι ∘ χ ∘ π ∘ ρ ∘ θ

Number of rounds: 12 + 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

Efficiency
high level of parallellism
flexibility: bit-interleaving
software: competitive on wide range of CPU
dedicated hardware: very competitive
Suited for DPA protection

39 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Motivating the design of Keccak-f

Keccak-f summary

Keccak-f propagation properties summary

χ: propagation weight ≈ Hamming weight

θ: high diffusion except for low-weight in-kernel patterns
π and ρ: drag those patterns out of the kernel

…for trails over 4 rounds or more
not for 3 rounds: kernel vortices

Additional benefit: weak alignment
no significant trail clustering
no truncated trails exploitable in rebound attacks

Algebraic attacks: low degree of round function
marginal theoretical distinguishers: zero-sum
no impact on security claim

40 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Keccak resources

Outline

1 Some history

2 Criteria for the permutation f

3 Choices for the permutation f

4 Motivating the design of Keccak-f

5 Keccak resources

41 / 43



Hashing and sponge functions Part 2: What we built and how we did it

Keccak resources

Keccak resources

Keccak documentation, a.o.:
Keccak reference
Keccak implementation overview
Cryptographic sponge functions

KeccakTools: set of documented C++ classes supporting:
individual steps θ, ρ, π, χ and ι
and their inverses ι−1 = ι, χ−1, π−1, ρ−1 and θ−1
equations in GF(2) of rounds or steps
trail propagation for DC and LC ,including base + offset

All freely available on http://keccak.noekeon.org

42 / 43

http://keccak.noekeon.org


Hashing and sponge functions Part 2: What we built and how we did it

Keccak resources

Questions?

Thanks for your attention!

Q?
More information on

http://keccak.noekeon.org/
http://sponge.noekeon.org/

43 / 43

http://keccak.noekeon.org/
http://sponge.noekeon.org/

	Some history
	The beginning
	Setting up the team
	Keccak

	Criteria for the permutation f
	The CICO problem
	Differential propagation
	Mask propagation

	Choices for the permutation f
	Abandon Panama building blocks?
	Inspiration from AES
	Back to the Panama building blocks

	Motivating the design of Keccak-f
	Keccak
	The state and its parts
	The nonlinear mapping chi
	theta', a mixing layer
	Inter-slice dispersion with rho
	Asymmetry with iota
	The Matryoshka property
	Intra-slice transposition with pi
	Improving theta
	Keccak-f summary

	Keccak resources

