
Hashing and sponge functions Part 2: What we can show and what we build

Hashing and sponge functions
Part 2: What we can show and what we build

Joan Daemen1

Joint work with
Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1

1STMicroelectronics 2NXP Semiconductors

NISNet Winter School,
Finse

May 26, 2011

1 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 2 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 3 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

The sponge construction

b-bit state
outer part: top r bits
inner part: bottom c bits

4 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

Inner collisions

State and inner collisions

State collision: different inputs leading to same state

Inner collision: different inputs leading to same inner state

5 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

The setting

Distinguisher setting

Adversary 𝒟 is presented a system 𝒳 that is either:
A random oracle ℛ𝒪
A random sponge 𝒮 [ℱ]

…and must guess which one of the two 𝒳 is

6 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

The setting

Distinguisher setting

Adversary sends queries (M, ℓ) according to algorithm 𝒜
Success probability of correct guess: Pr(success∣𝒜)

Concept of advantage:

Pr(success∣𝒜) =
1
2
+

1
2
Adv(𝒜)

Express advantage as a function of total cost of queries N

7 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

The bound

A bound on the ℛ𝒪-distinguishing advantage

We define the cost of a query as: N(M, ℓ) = ⌊ ∣M∣+1
r ⌋ + ⌈ ℓr ⌉

Equals # calls to ℱ in case of random sponge

Attack cost N = ∑i N(Mi, ℓi) of all queries

ℛ𝒪-distinguishing advantage bounding theorem

Adv(𝒜) ≤ Advmax ≤ N2

2c+1

= success probability of optimum inner-collision search

As tight as theoretically possible

8 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

What does the bound mean?

Implications of the distinguishing advantage bound

Let 𝒜: n-bit output pre-image attack. Success probability:
𝒳 = ℛ𝒪: Ppre(𝒜∣ℛ𝒪)
𝒳 = 𝒮 [ℱ]: Ppre(𝒜∣𝒮 [ℱ])

It is easy to see that:
Ppre(𝒜∣𝒮 [ℱ]) ≤ Advmax + Ppre(𝒜∣ℛ𝒪)
if not true, 𝒜 would form a distinguisher with advantage:
Adv(𝒜) = Ppre(𝒜∣𝒮 [ℱ]) − Ppre(𝒜∣ℛ𝒪) > Advmax

This can be generalized to any attack
Upper bounds success probability of all generic attacks
Justifies flat sponge claim!

9 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Using the sponge construction for building functions

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 10 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Using the sponge construction for building functions

Using the sponge construction in practice

Up to now, we used random sponges as security reference
for expressing security claims and requirements
it appears that these claims can be met

How to build functions for which such a claim can hold?
Patch existing constructions

Merkle-Damgård is not sound but can be patched
for infinite output: mask generating function (MGF) mode
solutions are ugly and sub-optimal

Use the sponge construction itself!
just design a suitable permutation f: known methods
distinguish sponge parameters r, c from claimed c

11 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Using the sponge construction for building functions

The Hermetic sponge strategy

Design approach

Hermetic sponge strategy
instantiate sponge function with some concrete f and c
have a flat sponge claim with the chosen c

Mission

Design permutation f without exploitable properties

12 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Soundness of the sponge construction

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 13 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Soundness of the sponge construction

Is the sponge construction sound?

Sponge construction is sound in this setting:

Proven bound: Advmax ≤ N2

2c+1

Imposes upper bound on success probability of any attack

But the setting itself is not realistic!
Adversary 𝒟 has no access to ℱ
In reality ℱ is a publically specified f

14 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Soundness of the sponge construction

Adapting the setting

Adapting the setting to reflect reality

Adversary now has additional query access to ℱ at the left
But interfaces of left and right systems must match

Additional component at the right: 𝒫
𝒫 is supposed to be hard to distinguish from ℱ

15 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Soundness of the sponge construction

The indifferentiability framework

The indifferentiability framework

Indifferentiability framework: Maurer et al.(2004)
Covers adversary with access to internal state at left
Additional interface, covered by a simulator at right
Applied to hash functions: Coron et al.(2005)

Methodology:
Build 𝒫 that makes left/right distinguishing difficult
Prove bound for advantage given this simulator 𝒫
𝒫 may query ℛ𝒪 for acting 𝒮-consistently: 𝒫 [ℛ𝒪]

16 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Soundness of the sponge construction

The ℛ𝒪-differentiating advantage bound

The bound on the ℛ𝒪-differentiating advantage

ℛ𝒪-differentiating advantage bounding theorem

Adv(𝒜) ≤ Advmax ≤ N2

2c+1

Equal to ℛ𝒪-distinguishing advantage bound

Upper bounds success probability of any generic attack

…even for an adversary with access to f and f−1

Conclusion: the sponge construction is sound

17 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 18 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

For regular hashing

19 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

For salted hashing

20 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

For salted hashing, as slow as you like it

21 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

As a message authentication code

22 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

As a stream cipher

23 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Straightforward applications

How to use a sponge function?

As a mask generating function [PKCS#1, IEEE Std 1363a]

24 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Beyond Sponge: the Duplex construction

MAC generation with a sponge

25 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Beyond Sponge: the Duplex construction

Encryption with a sponge

26 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Applications

Beyond Sponge: the Duplex construction

Both encryption and MAC?

27 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 28 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Formal definition

The duplex construction

Object: D = duplex[f, pad, r]
Requesting ℓ-bit output Z = D.duplexing(σ, ℓ)

input σ and output Z limited in length
Z depends on all previous inputs

29 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Duplex and sponge

Generating duplex responses with a sponge

Z0 = sponge(σ0, ℓ0)

30 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Duplex and sponge

Generating duplex responses with a sponge

Z1 = sponge(pad(σ0)∣∣σ1, ℓ1)
31 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Duplex and sponge

Generating duplex responses with a sponge

Z2 = sponge(pad(σ0)∣∣pad(σ1)∣∣σ2, ℓ2)
32 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Duplex and sponge

Properties of duplex construction

Security of duplex[f, pad, r] equivalent to sponge[f, pad, r]
New type of cryptographic object

Input can be provided in each call
Output can be requested for each call
Memory: output to a call depends on all previous inputs

Almost as efficient as the sponge construction itself
Multi-rate security

Maximum length of σ two bits shorter than rate
For avoiding misalignment, add two bits to rate
Theorem: security of sponges sharing f with different c

Opens up new applications …

33 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Authenticated encryption

Authenticated encryption

Functionality:
Tag computation over data header and data body
Encryption of body into cryptogram, diversified by header

Wrapping:
Input: key, data header and body
Output: tag and cryptogram

Unwrapping
Input: key, data header and cryptogram, tag
Output: cryptogram or error message if tag is invalid

Security requirements
Tag forgery infeasibility
Plaintext recovery infeasibility

34 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

The SpongeWrap mode

The SpongeWrap mode

Key K, data header A and data body B of arbitrary length

Supports intermediate tags

35 / 46

Hashing and sponge functions Part 2: What we can show and what we build

The duplex construction

Duplex as reseedable pseudorandom bit generator

Reseedable pseudorandom bit generator

Requirements:

Seeding and reseeding

Pseudo-random output depends on all past seeds

Forward secrecy

36 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 37 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

Keyed sponge functions

Keyed sponge

KeyedSponge[K](x) = sponge(K∣∣x)

E.g., MAC = KeyedSponge(m)

38 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

The setting

The adversary’s setting

M: online data complexity (blocks)
Calls to KeyedSponge[K] with unknown key K, or to ℛ𝒪

N: offline time complexity (calls to f)
Not involving the key

39 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

The bound

Distinguishing theorem

Upper bound on distinguishing advantage

M2/2 + 2MN
2c

+ Pkey(N)

Pkey(N): probability of guessing the key after N calls to f

If M ≪ 2c/2

Time complexity is about min(2c−1/M, 2∣K∣)

40 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

A particular case

Limited data complexity

If the (online) data complexity is limited to M ≤ 2a

… by the protocol, by the secure device …

And the capacity is c ≥ ∣K∣ + a + 1

Then we get the security of exhaustive key search

min(2c−1/M, 2∣K∣) = 2∣K∣

41 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

Illustration of the bound

The new bound, illustrated

a = log M

|K|

c/2

c/2 c

42 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

Application to lightweight cryptography

Building lightweight implementations

Trade-off between security (c) and efficiency (r)
b = r + c

Example 1: Quark [Aumasson et al., Quark, …, CHES 2010]

u-Quark r = 8 c = 128
d-Quark r = 16 c = 160
s-Quark r = 32 c = 224

Example 2: Keccak supports : b ∈ {25, 50, 100 . . . 1600}
E.g., Keccak[r = 40, c = 160] is compact in hardware
[Bertoni et al., Keccak implementation overview]

43 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Security proof for keyed modes

Building lighter implementations

Building implementations that are even lighter

Target example: 80-bit key with Quark

Old bound: d-Quark (r = 16, c = 160)
c = 2∣K∣

New bound: u-Quark (r = 8, c = 128)
with data complexity restricted to 247 blocks

44 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Conclusions

Outline

1 Distinguishing a random sponge from a random oracle

2 Using the sponge construction for building functions

3 Soundness of the sponge construction

4 Applications

5 The duplex construction

6 Security proof for keyed modes

7 Conclusions 45 / 46

Hashing and sponge functions Part 2: What we can show and what we build

Conclusions

Conclusions

The flat sponge claim makes sense

Sponge construction suitable for building secure primitive

Sponge functions cover most symmetric crypto operations
Duplex construction covers

efficient authenticated encryption
reseedable PRG
…

Bound for keyed modes allows lightweight sponges
Sponge and duplex are just modes of a permutation

Do we still need hash functions, block- or stream ciphers?

46 / 46

	Distinguishing a random sponge from a random oracle
	Inner collisions
	The setting
	The bound
	What does the bound mean?

	Using the sponge construction for building functions
	The Hermetic sponge strategy

	Soundness of the sponge construction
	Adapting the setting
	The indifferentiability framework
	The RO-differentiating advantage bound

	Applications
	Straightforward applications
	Beyond Sponge: the Duplex construction

	The duplex construction
	Formal definition
	Duplex and sponge
	Authenticated encryption
	The SpongeWrap mode
	Duplex as reseedable pseudorandom bit generator

	Security proof for keyed modes
	The setting
	The bound
	A particular case
	Illustration of the bound
	Application to lightweight cryptography
	Building lighter implementations

	Conclusions

