Hashing and sponge functions Part 2: What we can show and what we build

Joan Daemen¹

Joint work with Guido Bertoni¹, Michaël Peeters² and Gilles Van Assche¹

¹STMicroelectronics ²NXP Semiconductors

NISNet Winter School, Finse May 26, 2011

Outline

- **1** Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction
- 4 Applications
- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

Outline

1 Distinguishing a random sponge from a random oracle

- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction

4 Applications

- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

The sponge construction

sponge

b-bit state

- outer part: top r bits
- *inner* part: bottom c bits

Inner collisions

State and inner collisions

State collision: different inputs leading to same stateInner collision: different inputs leading to same *inner* state

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

└─ The setting

Distinguisher setting

Adversary \mathcal{D} is presented a system \mathcal{X} that is either:

- A random oracle \mathcal{RO}
- A random sponge $\mathcal{S}[\mathcal{F}]$

• ...and must guess which one of the two \mathcal{X} is

Hashing and sponge functions Part 2: What we can show and what we build

Distinguishing a random sponge from a random oracle

└─ The setting

Distinguisher setting

- Adversary sends queries (M, ℓ) according to algorithm \mathcal{A}
- Success probability of correct guess: Pr(success | A)
- Concept of advantage:

$$\Pr(\operatorname{success}|\mathcal{A}) = \frac{1}{2} + \frac{1}{2}\operatorname{Adv}(\mathcal{A})$$

Express advantage as a function of total cost of queries N

L The bound

A bound on the $\mathcal{RO}\text{-distinguishing}$ advantage

- We define the cost of a query as: $N(M, \ell) = \lfloor \frac{|M|+1}{r} \rfloor + \lceil \frac{\ell}{r} \rceil$
- Equals # calls to \mathcal{F} in case of random sponge
- Attack cost $N = \sum_i N(M_i, \ell_i)$ of all queries

$\mathcal{RO}\text{-distinguishing}$ advantage bounding theorem

$$\mathsf{Adv}(\mathcal{A}) \leq \mathsf{Adv}_{\mathsf{max}} \leq \frac{N^2}{2^{\mathsf{c}+1}}$$

- success probability of optimum inner-collision search
- As tight as theoretically possible

└─ What does the bound mean?

Implications of the distinguishing advantage bound

- Let *A*: *n*-bit output pre-image attack. Success probability:
 - $\blacksquare \ \mathcal{X} = \mathcal{RO}: \mathit{P}_{\mathsf{pre}}(\mathcal{A}|\mathcal{RO})$
 - $\blacksquare \ \mathcal{X} = \mathcal{S}[\mathcal{F}]: \mathbf{P}_{\mathsf{pre}}(\mathcal{A}|\mathcal{S}[\mathcal{F}])$
- It is easy to see that:
 - $\blacksquare \ \textit{P}_{\rm pre}(\mathcal{A}|\mathcal{S}[\mathcal{F}]) \leq {\rm Adv}_{\rm max} + \textit{P}_{\rm pre}(\mathcal{A}|\mathcal{RO})$
 - if not true, \mathcal{A} would form a distinguisher with advantage:
 - $\blacksquare \operatorname{Adv}(\mathcal{A}) = \operatorname{P_{pre}}(\mathcal{A}|\mathcal{S}[\mathcal{F}]) \operatorname{P_{pre}}(\mathcal{A}|\mathcal{RO}) > \operatorname{Adv_{max}}$
- This can be generalized to any attack
 - Upper bounds success probability of all generic attacks
 - Justifies flat sponge claim!

Using the sponge construction for building functions

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction

4 Applications

- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

└─ Using the sponge construction for building functions

Using the sponge construction in practice

- Up to now, we used random sponges as security reference
 - for expressing security claims and requirements
 - it appears that these claims can be met
- How to build functions for which such a claim can hold?
- Patch existing constructions
 - Merkle-Damgård is not sound but can be patched
 - for infinite output: mask generating function (MGF) mode
 - solutions are ugly and sub-optimal
- Use the sponge construction itself!
 - just design a suitable permutation *f*: known methods
 - distinguish sponge parameters *r*, *c* from claimed *c*

Using the sponge construction for building functions

L The Hermetic sponge strategy

Design approach

Hermetic sponge strategy

instantiate sponge function with some concrete f and c

have a flat sponge claim with the chosen c

Mission

Design permutation *f* without exploitable properties

Soundness of the sponge construction

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction

4 Applications

- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

Soundness of the sponge construction

Is the sponge construction sound?

- Sponge construction is sound in this setting:
 - Proven bound: $Adv_{max} \leq \frac{N^2}{2^{c+1}}$
 - Imposes upper bound on success probability of any attack
- But the setting itself is not realistic!
 - Adversary \mathcal{D} has no access to \mathcal{F}
 - In reality *F* is a publically specified *f*

- Soundness of the sponge construction

Adapting the setting

Adapting the setting to reflect reality

Adversary now has additional query access to $\mathcal F$ at the left

- But interfaces of left and right systems must match
 - Additional component at the right: \mathcal{P}
 - $\blacksquare \ \mathcal{P}$ is supposed to be hard to distinguish from \mathcal{F}

Hashing and sponge functions Part 2: What we can show and what we build

-Soundness of the sponge construction

└─ The indifferentiability framework

The indifferentiability framework

Indifferentiability framework: Maurer et al.(2004)

- Covers adversary with access to internal state at left
- Additional interface, covered by a simulator at right
- Applied to hash functions: Coron et al.(2005)
- Methodology:
 - Build *P* that makes left/right distinguishing difficult
 - Prove bound for advantage given this simulator \mathcal{P}
 - \mathcal{P} may query \mathcal{RO} for acting \mathcal{S} -consistently: $\mathcal{P}[\mathcal{RO}]$

— Soundness of the sponge construction

└─ The *RO*-differentiating advantage bound

The bound on the $\mathcal{RO}\text{-differentiating}$ advantage

$\mathcal{RO}\text{-differentiating}$ advantage bounding theorem

$$\operatorname{Adv}(\mathcal{A}) \leq \operatorname{Adv}_{\max} \leq \frac{N^2}{2^{c+1}}$$

- Equal to *RO*-distinguishing advantage bound
- Upper bounds success probability of any generic attack
- ...even for an adversary with access to f and f^{-1}
- Conclusion: the sponge construction is sound

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction

4 Applications

- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

└─ Straightforward applications

How to use a sponge function?

For regular hashing

└─ Straightforward applications

How to use a sponge function?

For salted hashing

└─ Straightforward applications

How to use a sponge function?

For salted hashing, as slow as you like it

└─ Straightforward applications

How to use a sponge function?

As a message authentication code

└─ Straightforward applications

How to use a sponge function?

As a stream cipher

└─ Straightforward applications

How to use a sponge function?

As a mask generating function [PKCS#1, IEEE Std 1363a]

Beyond Sponge: the Duplex construction

MAC generation with a sponge

Beyond Sponge: the Duplex construction

Encryption with a sponge

- Beyond Sponge: the Duplex construction

Both encryption and MAC?

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction
- 4 Applications
- 5 The duplex construction
 - 6 Security proof for keyed modes

7 Conclusions

└─ Formal definition

The duplex construction

- Object: D = DUPLEX[f, pad, r]
- **Requesting** ℓ -bit output Z = D.duplexing (σ, ℓ)
 - input σ and output Z limited in length
 - Z depends on all previous inputs

└─ Duplex and sponge

Generating duplex responses with a sponge

$$Z_0 = \operatorname{sponge}(\sigma_0, \ell_0)$$

└─ Duplex and sponge

Generating duplex responses with a sponge

$$Z_1 = \mathsf{sponge}(\mathsf{pad}(\sigma_0) || \sigma_1, \ell_1)$$

Duplex and sponge

Generating duplex responses with a sponge

 $Z_2 = \text{sponge}(\text{pad}(\sigma_0)||\text{pad}(\sigma_1)||\sigma_2, \ell_2)$

Duplex and sponge

Properties of duplex construction

- Security of DUPLEX[*f*, pad, *r*] equivalent to SPONGE[*f*, pad, *r*]
- New type of cryptographic object
 - Input can be provided in each call
 - Output can be requested for each call
 - Memory: output to a call depends on all previous inputs
- Almost as efficient as the sponge construction itself
- Multi-rate security
 - Maximum length of σ two bits shorter than rate
 - For avoiding misalignment, add two bits to rate
 - Theorem: security of sponges sharing f with different c

Opens up new applications ...

Authenticated encryption

Authenticated encryption

Functionality:

- Tag computation over data header and data body
- Encryption of body into cryptogram, *diversified by* header
- Wrapping:
 - Input: key, data header and body
 - Output: tag and cryptogram
- Unwrapping
 - Input: key, data header and cryptogram, tag
 - Output: cryptogram or error message if tag is invalid
- Security requirements
 - Tag forgery infeasibility
 - Plaintext recovery infeasibility

└─ The SpongeWrap mode

The SpongeWrap mode

- Key K, data header A and data body B of arbitrary length
- Supports intermediate tags

- The duplex construction
 - Duplex as reseedable pseudorandom bit generator

Reseedable pseudorandom bit generator

Requirements:

- Seeding and reseeding
- Pseudo-random output depends on all past seeds
- Forward secrecy

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction
- 4 Applications
- 5 The duplex construction

6 Security proof for keyed modes

7 Conclusions

Keyed sponge functions

Keyed sponge

KeyedSponge[K](x) = sponge(K||x)

• E.g., MAC = KEYEDSPONGE(m)

└─ The setting

The adversary's setting

- M: online data complexity (blocks)
 - Calls to KeyedSponge[K] with unknown key K, or to \mathcal{RO}
- N: offline **time** complexity (calls to f)
 - Not involving the key

L The bound

Distinguishing theorem

Upper bound on distinguishing advantage

$$\frac{M^2/2 + 2MN}{2^c} + P_{\text{key}}(N)$$

• $P_{\text{key}}(N)$: probability of guessing the key after N calls to f

If $M \ll 2^{c/2}$

Time complexity is about $\min(2^{c-1}/M, 2^{|K|})$

└─A particular case

Limited data complexity

- If the (online) data complexity is limited to M ≤ 2^a
 ... by the protocol, by the secure device ...
- And the capacity is $c \ge |K| + a + 1$
- Then we get the security of exhaustive key search

$$\min(\mathbf{2^{c-1}}/\textit{M},\mathbf{2}^{|\textit{K}|})=\mathbf{2}^{|\textit{K}|}$$

└─ Illustration of the bound

The new bound, illustrated

Application to lightweight cryptography

Building lightweight implementations

- Trade-off between security (c) and efficiency (r)
 b = r + c
- Example 1: QUARK [Aumasson et al., QUARK, ..., CHES 2010]

u-Quark	<i>r</i> = 8	c = 128
d-Quark	<i>r</i> = 16	c = 160
s-Quark	<i>r</i> = 32	c = 224

• Example 2: KECCAK supports : $b \in \{25, 50, 100 \dots 1600\}$

E.g., KECCAK[r = 40, c = 160] is compact in hardware [Bertoni et al., ΚΕCCAK implementation overview]

Building lighter implementations

Building implementations that are even lighter

Target example: 80-bit key with QUARK

New bound: U-QUARK (r = 8, c = 128) with data complexity restricted to 2⁴⁷ blocks

- Conclusions

Outline

- 1 Distinguishing a random sponge from a random oracle
- 2 Using the sponge construction for building functions
- 3 Soundness of the sponge construction
- 4 Applications
- 5 The duplex construction
- 6 Security proof for keyed modes

7 Conclusions

- Conclusions

Conclusions

- The flat sponge claim makes sense
- Sponge construction suitable for building secure primitive
- Sponge functions cover most symmetric crypto operations
- Duplex construction covers
 - efficient authenticated encryption
 - reseedable PRG
 - ····
- Bound for keyed modes allows lightweight sponges
- Sponge and duplex are just modes of a permutation
 - Do we still need hash functions, block- or stream ciphers?