
Hashing and sponge functions Part 1: What we have and what we need

Hashing and sponge functions
Part 1: What we have and what we need

Joan Daemen1

Joint work with
Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1

1STMicroelectronics 2NXP Semiconductors

NISNet Winter School,
Finse

May 26, 2011

1 / 39



Hashing and sponge functions Part 1: What we have and what we need

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

2 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

3 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

Short definition

Cryptographic hash functions

Function h
from any binary string {0, 1}∗
to a fixed-size digest {0, 1}n
One-way: given h(x) hard to find x…

Applications in cryptography
Signatures: signRSA(h(M)) instead of signRSA(M)
Key derivation: master key K to derived keys (Ki = h(K∥i))
Bit commitment, predictions: h(what I know)
Message authentication: h(K∥M)
…

4 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

The mainstream in hash functions

Examples of popular hash functions

MD5: n = 128
Published by Ron Rivest in 1992
Successor of MD4 (1990)

SHA-1: n = 160
Designed by NSA, standardized by NIST in 1995
Successor of SHA-0 (1993)

SHA-2: family supporting multiple lengths
Designed by NSA, standardized by NIST in 2001
4 members named SHA-n
SHA-224, SHA-256, SHA-384 and SHA-512

5 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

Internals

The chaining structure: Merkle-Damgård

Simple iterative construction:
iterative application of compression function (CF)
message length is coded in the padding

Proven collision-resistance preserving, implying
CV size = digest size: narrow pipe
generating collisions for CF must be made hard

6 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

Internals

The compression function structure: Davies-Meyer

Uses a block cipher:

Separation data path and message expansion

Feedforward due to Merkle-Damgård

7 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

Internals

The use of basic operations

All popular hash functions were based on ARX
addition modulo 2n with n = 32 (and n = 64)
bitwise addition: XOR
bitwise shift operations, cyclic shift
security: “algebraically incompatible operations”

ARX would be elegant
…but silently assumes a specific integer coding

ARX would be efficient
…but only in software on CPUs with n-bit words

ARX would have good cryptographic properties
but is very hard to analyze
…attacks have appeared after years

8 / 39



Hashing and sponge functions Part 1: What we have and what we need

There is something rotten …

A crisis of confidence

Trouble in paradise

1991-1993: Den Boer and Bosselaers attack MD4 and MD5

1996: Dobbertin improves attacks on MD4 and MD5

1998: Chabaud and Joux attack SHA-0

2004: Joux et al. break SHA-0

2004: Wang et al. break MD5

2005: Lenstra et al., and Klima, make MD5 attack practical

2005: Wang et al. theoretically break SHA-1

2006: De Cannière and Rechberger further break SHA-1

Many more results and authors

Also generic attacks on chaining mode (see later)

9 / 39



Hashing and sponge functions Part 1: What we have and what we need

The SHA-3 contest

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

10 / 39



Hashing and sponge functions Part 1: What we have and what we need

The SHA-3 contest

NIST calls out for help

A way out of the hash function crisis

2005-2006: trust in established hash functions was
crumbling, due to

use of ARX
adoption of Merkle-Damgård
and SHA-2 were based on the same principles

2007: NIST calls for SHA-3
similar to AES contest
a case for the international cryptographic community!

11 / 39



Hashing and sponge functions Part 1: What we have and what we need

The SHA-3 contest

The deal

SHA-3 Contest

Open competition organized by NIST
NIST provides forum
scientific community contributes: designs, attacks,
implementations, comparisons
NIST draws conclusions and decides

Goal: replacement for the SHA-2 family
224, 256, 384 and 512-bit output sizes
other output sizes are optional

Requirements
security levels specified for traditional attacks
each submission must have

complete documentation, including design rationale
reference and optimized implementations in C

12 / 39



Hashing and sponge functions Part 1: What we have and what we need

The SHA-3 contest

Time schedule

SHA-3 Time Schedule

January 2007: initial call

October 2008: submission deadline
February 2009: first SHA-3 conference in Leuven

Presentation of 1st round candidates

July 2009: NIST announces 2nd round candidates
August 2010: second SHA-3 conference in Santa Barbara

cryptanalytic results
hardware and software implementation surveys
new applications

December 2010: announcement of finalists

2012: final SHA-3 conference and selection of winner(s)

13 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

14 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Folklore

Traditional security requirements of hash functions

Function h from Z∗2 to Zn2

Security requirements
pre-image resistance
2nd pre-image resistance
collision resistance

15 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Folklore

Pre-image resistance

Given y ∈ Zn2, find x ∈ Z∗2 such that h(x) = y

Example: given derived key K1 = h(K∥1), find master key K

There exists a generic attack requiring about 2n calls to h

Requirement: there is no attack more efficient

16 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Folklore

2nd pre-image resistance

Given x ∈ Z∗2, find x′ ∕= x such that h(x′) = h(x)
Example: signature forging

given M and sign(h(M)), find another M′ with equal
signature

There exists a generic attack requiring about 2n calls to h

17 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Folklore

Collision resistance

Find x1 ∕= x2 such that h(x1) = h(x2)

There exists a generic attack requiring about 2n/2 calls to h
Birthday paradox: among 23 people, two have the same
birthday (with 50% probability)
Scales as

√∣range∣ = 2n/2

18 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Folklore

Collision resistance (continued)

Example: “secretary” signature forging

Set of good messages {Mgood
i }

Set of bad messages {Mbad
i }

Find h(Mgood
i ) = h(Mbad

j )

Boss signs Mgood
i , but valid also for Mbad

j

19 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Additional requirements

Other requirements

What if we use a hash function in other applications?

To build a MAC function, e.g., HMAC (FIPS 198)
To destroy algebraic structure, e.g.,

encryption with RSA: OAEP (PKCS #1)
signing with RSA: PSS (PKCS #1)

Problem:
additional requirements on top of traditional ones
how to know what a hash function is designed for?

20 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

The challenge of expressing security claims

Contract

Security of a concrete hash function h cannot be proven
sometimes reductions are possible…
rely on public scrutiny!

Security claim: contract between designer and user
security claims ≥ security requirements
attack that invalidates claim, breaks h!

Claims often implicit
e.g., the traditional security requirements are implied

21 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

The challenge of expressing security claims

List of claimed properties

Security claims by listing desired properties
collision resistant
(2nd) pre-image resistant
correlation-free
resistant against length-extension attacks
chosen-target forced-prefix pre-image resistance
…

But ever-growing list of desired properties

Moving target as new applications appear over time

But hey, the ideal hash function exists!

22 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Random oracles (ℛ𝒪)

Random oracle ℛ𝒪

A random oracle [Bellare-Rogaway 1993] maps:
message of variable length
to an infinite output string

Supports queries of following type: (M, ℓ)
M: message
ℓ: requested number of output bits

Response Z
String of ℓ bits
Independently and identically distributed bits
Self-consistent: equal M give matching outputs

23 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

ℛ𝒪 as a security reference

Compact security claim

Truncated to n bits, ℛ𝒪 has all desired properties, e.g.,
Generating a collision: 2n/2

Finding a (2nd) pre-image: 2n

And [my chosen requirement]: f(n)

Proposal for a compact security claim:
“My function h behaves as a random oracle”

Does not work, unfortunately

24 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

The problem with ℛ𝒪-based claims

Iterated hash functions

All practical hash functions are iterated
Message M cut into blocks M1, . . . ,Ml
q-bit chaining value

Output is function of final chaining value

25 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

The problem with ℛ𝒪-based claims

Internal collisions!

Difference inputs M and M′ giving the same chaining value

Messages M∥X and M′∥X always collide for any string X

26 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

The finite memory

How to deal with internal collisions?

ℛ𝒪 has no internal collisions
If truncated to n bits, it does have collisions, say M and M′
But M∣∣X and M′∣∣X collide only with probability 2−n

Random oracle has “infinite memory”

Abandon iterated modes to meet the ℛ𝒪 ideal?
In-memory hashing, non-streamable hash functions?
Model for finite memory, internal collisions!

27 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Variable-length output

Variable output-length functions

Variable-length output:
Single function for different hash function lengths
Useful, e.g., for signatures, “mask generating functions”
Stream cipher

Exponential scaling of the security requirements?!?

Pre-image resistance 2n ?
2nd pre-image resistance 2n ?
Collision resistance 2n/2 ?

28 / 39



Hashing and sponge functions Part 1: What we have and what we need

Hash function security requirements

Towards a compact security claim

How to have a compact security claim?

Try to define some thing Π that
has the same interface as ℛ𝒪
behaves like ℛ𝒪 …
…modulo internal collisions

Strength of Π depends on some (size) parameters
Compact security claim would then be:

“My function h behaves as a Π with given size parameters”

Output length no longer appears in security claim

What could Π be?

29 / 39



Hashing and sponge functions Part 1: What we have and what we need

Sponge functions

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

30 / 39



Hashing and sponge functions Part 1: What we have and what we need

Sponge functions

The sponge construction

The sponge construction (2007)

Calls a b-bit permutation (or transformation) f
r bits of rate
c bits of capacity (security parameter)
b = r + c

Padding rule must satisfy some simple requirements
31 / 39



Hashing and sponge functions Part 1: What we have and what we need

Sponge functions

Random sponges

Random sponges

Random T-sponge: f chosen randomly from (2r+c)2
r+c

transformations

Random P-sponge: f chosen randomly from (2r+c)!
permutations f

Random sponges become our reference Π
Express security claim now requires specifying:

c: capacity
r: bitrate
whether f is a permutation or transformation

32 / 39



Hashing and sponge functions Part 1: What we have and what we need

Sponge functions

Flat sponge claim

Flat sponge claim

Simplifying the claim to a single parameter

Flat sponge claim with claimed capacity c

For any attack, the success probability is not above the sum of
that for a ℛ𝒪 and N2/2c+1, with N the number of calls to f

33 / 39



Hashing and sponge functions Part 1: What we have and what we need

Sponge functions

Flat sponge claim explained

What does a flat sponge claim state?

Example: c = 256

N2/2257 becomes significant when N ≈ 2128

Collision-resistance:
Similar to that of random oracle up to n = 256
Maximum achievable security level: 2128

(2nd) pre-image resistance:
Similar to that of random oracle up to n = 128
Maximum achievable security level: 2128

Flat sponge claim forms a ceiling to the security claim
As good as a random oracle below 2c/2 queries
No guarantees beyond 2c/2 queries
If 2c/2 is out of reach, that is OK!

34 / 39



Hashing and sponge functions Part 1: What we have and what we need

The NIST SHA-3 requirements

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

35 / 39



Hashing and sponge functions Part 1: What we have and what we need

The NIST SHA-3 requirements

The NIST SHA-3 security requirements

Output length 224 256 384 512
Collision resistance 2112 2128 2192 2256

Pre-image resistance 2224 2256 2384 2512

2nd pre-image resistance 2224/ℓ 2256/ℓ 2384/ℓ 2512/ℓ
ℓ = message length

Puzzling to say the least
excessive requirements for (2nd) pre-image resistance
collisions less important than pre-images?
2nd pre-image resistance of long messages less important?

36 / 39



Hashing and sponge functions Part 1: What we have and what we need

The NIST SHA-3 requirements

…explained

The NIST SHA-3 security requirements explained

Do not express what would be useful
But what can hopefully be achieved by Merkle-Damgård

collision-resistance: that of ideal compression function
pre-image: appears achievable for basic case
2nd pre-image: used to be 2n but adapted after …

Wave of generic attacks against Merkle-Damgård
Joux (2004): Multicollisions
Kelsey and Schneier (2005): 2nd pre-image attacks
Kohno and Kelsey (2006): Herding attacks
…
All use internal collisions due to narrow pipe

37 / 39



Hashing and sponge functions Part 1: What we have and what we need

Conclusions

Outline

1 There is something rotten …

2 The SHA-3 contest

3 Hash function security requirements

4 Sponge functions

5 The NIST SHA-3 requirements

6 Conclusions

38 / 39



Hashing and sponge functions Part 1: What we have and what we need

Conclusions

Conclusions

Monoculture has resulted in hashing confidence crisis
ARX less secure than expected
Merkle-Damgård less sound than believed

NIST calls out for help
addressed to the cryptographic community
with requirements still deeply rooted in crypto folklore

Random sponges allow expressing compact security claims
express security against all thinkable attacks
“As good as a random oracle up to some ceiling”
flat sponge claim appears achievable

39 / 39


	There is something rotten �
	Short definition
	The mainstream in hash functions
	Internals
	A crisis of confidence

	The SHA-3 contest
	NIST calls out for help
	The deal
	Time schedule

	Hash function security requirements
	Folklore
	Additional requirements
	The challenge of expressing security claims
	Random oracles (RO)
	RO as a security reference
	The problem with RO-based claims
	The finite memory
	Variable-length output
	Towards a compact security claim

	Sponge functions
	The sponge construction
	Random sponges
	Flat sponge claim
	Flat sponge claim explained

	The NIST SHA-3 requirements
	�explained

	Conclusions

