Hashing and sponge functions Part 1: What we have and what we need

Hashing and sponge functions
Part 1: What we have and what we need

Joan Daemen!

Joint work with
Guido BERTONIY, Michaél PEETERS? and Gilles Van Assche!

1STMicroelectronics 2NXP Semiconductors

NISNet Winter School,
Finse
May 26, 2011

1/39

Hashing and sponge functions Part 1: What we have and what we need

Outline

9 0 9 8 3

5

There is something rotten ...

The SHA-3 contest

Hash function security requirements
Sponge functions

The NIST SHA-3 requirements

Conclusions

2/39

Hashing and sponge functions Part 1: What we have and what we need

L there is something rotten ...

Outline

There is something rotten ...

3/39

Hashing and sponge functions Part 1: What we have and what we need

L there is something rotten ...

Short definition

Cryptographic hash functions

m Function h
m from any binary string {0, 1}*
m to a fixed-size digest {0, 1}"
m One-way: given h(x) hard to find x...

[iopicsting '

m Applications in cryptography

B Signatures: signgea(h(M)) instead of signgsa (M)
Key derivation: master key K to derived keys (K; = h(K||i))
Bit commitment, predictions: h(what | know)

[
[
m Message authentication: h(K||M)
[

Hashing and sponge functions Part 1: What we have and what we need
L there is something rotten ...
The mainstream in hash functions

Examples of popular hash functions

m MD5: n = 128
m Published by Ron Rivest in 1992
m Successor of MD4 (1990)
m SHA-1: n = 160
m Designed by NSA, standardized by NIST in 1995
m Successor of SHA-0 (1993)
m SHA-2: family supporting multiple lengths

m Designed by NSA, standardized by NIST in 2001
B 4 members named SHA-n
m SHA-224, SHA-256, SHA-384 and SHA-512

Hashing and sponge functions Part 1: What we have and what we need

L there is something rotten ...
Internals

The chaining structure: Merkle-Damgard

m Simple iterative construction:
m iterative application of compression function (CF)
m message length is coded in the padding

m Proven collision-resistance preserving, implying

m CV size = digest size: narrow pipe
m generating collisions for CF must be made hard

| Inp | | ut S | | trin | |g+padding|

f:f:\—ﬂT\

Hashing and sponge functions Part 1: What we have and what we need

L there is something rotten ...
Internals

The compression function structure: Davies-Meyer

Message expansion

O
<
A 4

Data path

» CV

Y

Uses a block cipher:

m Separation data path and message expansion

m Feedforward due to Merkle-Damgard

7139

Hashing and sponge functions Part 1: What we have and what we need

L there is something rotten ...
Internals

The use of basic operations

m All popular hash functions were based on ARX

m addition modulo 2" with n = 32 (and n = 64)

m bitwise addition: XOR

m bitwise shift operations, cyclic shift

m security: “algebraically incompatible operations”
m ARX would be elegant

m ..but silently assumes a specific integer coding
m ARX would be efficient

m ..but only in software on CPUs with n-bit words

m ARX would have good cryptographic properties

m but is very hard to analyze
m ..attacks have appeared after years

Hashing and sponge functions Part 1: What we have and what we need
There is something rotten ...
A crisis of confidence

Trouble in paradise

m 1991-1993: Den Boer and Bosselaers attack MD4 and MD5
m 1996: Dobbertin improves attacks on MD4 and MD5

m 1998: Chabaud and Joux attack SHA-0

B 2004: Joux et al. break SHA-0

B 2004: Wang et al. break MD5

B 2005: Lenstra et al., and Klima, make MD5 attack practical
® 2005: Wang et al. theoretically break SHA-1

m 2006: De Canniere and Rechberger further break SHA-1

®m Many more results and authors

m Also generic attacks on chaining mode (see later)

Hashing and sponge functions Part 1: What we have and what we need

LThe SHA-3 contest

Outline

The SHA-3 contest

10/39

Hashing and sponge functions Part 1: What we have and what we need
LThe SHA-3 contest
NIST calls out for help

A way out of the hash function crisis

B 2005-2006: trust in established hash functions was
crumbling, due to

m use of ARX

m adoption of Merkle-Damgérd

m and SHA-2 were based on the same principles
m 2007: NIST calls for SHA-3

m similar to AES contest
m a case for the international cryptographic community!

11/39

Hashing and sponge functions Part 1: What we have and what we need

The deal

SHA-3 Contest

m Open competition organized by NIST

m NIST provides forum

B scientific community contributes: designs, attacks,
implementations, comparisons

m NIST draws conclusions and decides

m Goal: replacement for the SHA-2 family
B 224, 256, 384 and 512-bit output sizes
m other output sizes are optional

m Requirements

m security levels specified for traditional attacks
m each submission must have

m complete documentation, including design rationale
B reference and optimized implementations in C

12/39

Hashing and sponge functions Part 1: What we have and what we need
LThe SHA-3 contest
Time schedule

SHA-3 Time Schedule

B January 2007: initial call
m October 2008: submission deadline

m February 2009: first SHA-3 conference in Leuven
m Presentation of 1st round candidates

m July 2009: NIST announces 2nd round candidates

m August 2010: second SHA-3 conference in Santa Barbara

m cryptanalytic results
m hardware and software implementation surveys
m new applications

m December 2010: announcement of finalists
m 2012: final SHA-3 conference and selection of winner(s)

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements

Outline

Hash function security requirements

14/39

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
Folklore

Traditional security requirements of hash functions

m Function h from Z; to Z}

[mputswing

m Security requirements

B pre-image resistance
® 2nd pre-image resistance
m collision resistance

15/39

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
Folklore

Pre-image resistance

m Giveny € Z, find x € Z; such that h(x) =y
m Example: given derived key K; = h(K||1), find master key K

72468 F3DC94

m There exists a generic attack requiring about 2" calls to h
® Requirement: there is no attack more efficient

16/39

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
Folklore

2nd pre-image resistance

m Given x € Z3, find X' # x such that h(x") = h(x)
m Example: signature forging

m given M and sign(h(M)), find another M" with equal
signature

72468F3DC94

Example of input

m There exists a generic attack requiring about 2" calls to h

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
Folklore

Collision resistance

m Find x; # x, such that h(x;) = h(x,)

x1?

x27

m There exists a generic attack requiring about 2"/2 calls to h
m Birthday paradox: among 23 people, two have the same
birthday (with 50% probability)
m Scales as /|range| = 2"/2

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
Folklore

Collision resistance (continued)

m Example: “secretary” signature forging

m Set of good messages {M&°°%}
m Set of bad messages {MP2d}
m Find h(ME*?) = h(mbad)

m Boss signs ME°°¢, but valid also for M}’ad

19/39

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
Additional requirements

Other requirements

m What if we use a hash function in other applications?
m To build a MAC function, e.g., HMAC (FIPS 198)
m To destroy algebraic structure, e.g.,
m encryption with RSA: OAEP (PKCS #1)
B signing with RSA: PSS (PKCS #1)
m Problem:

m additional requirements on top of traditional ones
m how to know what a hash function is designed for?

20/39

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements
The challenge of expressing security claims

Contract

m Security of a concrete hash function h cannot be proven
m sometimes reductions are possible...
m rely on public scrutiny!
m Security claim: contract between designer and user
B security claims > security requirements
m attack that invalidates claim, breaks h!
m Claims often implicit
m e.g., the traditional security requirements are implied

21/39

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
The challenge of expressing security claims

List of claimed properties

m Security claims by listing desired properties

m collision resistant

® (2nd) pre-image resistant

m correlation-free

B resistant against length-extension attacks

m chosen-target forced-prefix pre-image resistance
m ..

m But ever-growing list of desired properties
® Moving target as new applications appear over time

But hey, the ideal hash function exists!

22/39

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
Random oracles (RO)

Random oracle RO

m A random oracle [Bellare-Rogaway 1993] maps:
m message of variable length
B to an infinite output string

m Supports queries of following type: (M, ¢)
B M: message
m /: requested number of output bits

m Response Z

m String of ¢ bits
m Independently and identically distributed bits
m Self-consistent: equal M give matching outputs

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
RO as a security reference

Compact security claim

m Truncated to n bits, RO has all desired properties, e.g.,
m Generating a collision: 2"/2
m Finding a (2nd) pre-image: 2"
m And [my chosen requirement]: f(n)
m Proposal for a compact security claim:
m “My function h behaves as a random oracle”

m Does not work, unfortunately

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
The problem with RO-based claims

Iterated hash functions

m All practical hash functions are iterated

B Message M cut into blocks My, ..., M,
m g-bit chaining value

m Output is function of final chaining value

25/39

Hashing and sponge functions Part 1: What we have and what we need

L Hash function security requirements

The problem with RO-based claims

Internal collisions!

ML/\ ML/\

cv f cv cv f X X, X
N N

ML/\ MB»/\ ov d cv Q cv LFJ cv
F F

cv cv cv
N N

m Difference inputs M and M’ giving the same chaining value
m Messages M||X and M’||X always collide for any string X

26/39

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
The finite memory

How to deal with internal collisions?

® RO has no internal collisions
m If truncated to n bits, it does have collisions, say M and M’
m But M||X and M’||X collide only with probability 2~"
m Random oracle has “infinite memory”

m Abandon iterated modes to meet the RO ideal?

B In-memory hashing, non-streamable hash functions?
m Model for finite memory, internal collisions!

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
Variable-length output

Variable output-length functions

m Variable-length output:

m Single function for different hash function lengths
m Useful, e.g., for signatures, “mask generating functions”
m Stream cipher

m Exponential scaling of the security requirements?!?

Pre-image resistance 2"7?
2nd pre-image resistance | 2" ?
Collision resistance 2"/2?

28/39

Hashing and sponge functions Part 1: What we have and what we need
L Hash function security requirements
Towards a compact security claim

How to have a compact security claim?

m Try to define some thing I that
m has the same interface as RO
m behaves like RO ..
m ..modulo internal collisions
m Strength of I'T depends on some (size) parameters
m Compact security claim would then be:
m “My function h behaves as a IT with given size parameters”

m Output length no longer appears in security claim
m What could IT be?

Hashing and sponge functions Part 1: What we have and what we need

L Sponge functions

Outline

Sponge functions

30/39

Hashing and sponge functions Part 1: What we have and what we need
LSponge functions
The sponge construction

The sponge construction (2007)

M A
| 4
pad : »{ || ¢
|
Y !
r|]0
R
[}
c||0
|
absorbing : squeezing
sponge

m Calls a b-bit permutation (or transformation) f
m r bits of rate
m c bits of capacity (security parameter)
mb=r+c
m Padding rule must satisfy some simple requirements

31/39

Hashing and sponge functions Part 1: What we have and what we need
LSponge functions
Random sponges

Random sponges

m Random T-sponge: f chosen randomly from (27+¢)2""
transformations
m Random P-sponge: f chosen randomly from (27+¢)!
permutations f
®m Random sponges become our reference I1
m Express security claim now requires specifying:
W C: capacity
B r: bitrate
m whether fis a permutation or transformation

32/39

Hashing and sponge functions Part 1: What we have and what we need
LSponge functions
Flat sponge claim

Flat sponge claim

Simplifying the claim to a single parameter

Flat sponge claim with claimed capacity ¢

For any attack, the success probability is not above the sum of
that for a RO and N?/2¢1, with N the number of calls to f

Hashing and sponge functions Part 1: What we have and what we need
LSponge functions
Flat sponge claim explained

What does a flat sponge claim state?

Example: ¢ = 256
N2 /2257 becomes significant when N ~ 2128

Collision-resistance:

m Similar to that of random oracle up to n = 256
m Maximum achievable security level: 222

(2nd) pre-image resistance:
m Similar to that of random oracle up to n = 128
m Maximum achievable security level: 22
Flat sponge claim forms a ceiling to the security claim

m As good as a random oracle below 2¢/? queries
m No guarantees beyond 2¢/2 queries
m If 2¢/2 is out of reach, that is OK!

34/39

Hashing and sponge functions Part 1: What we have and what we need

LThe NIST SHA-3 requirements

Outline

The NIST SHA-3 requirements

35/39

Hashing and sponge functions Part 1: What we have and what we need

LThe NIST SHA-3 requirements

The NIST SHA-3 security requirements

Output length 224 256 384 512
Collision resistance 2112 2128 2192 2256
Pre-image resistance 2224 2256 2384 2512
2nd pre-image resistance | 2224/¢ 226 /¢ 2384 /¢ 252/¢

¢ = message length

m Puzzling to say the least

B excessive requirements for (2nd) pre-image resistance
m collisions less important than pre-images?
m 2nd pre-image resistance of long messages less important?

36/39

Hashing and sponge functions Part 1: What we have and what we need

LThe NIST SHA-3 requirements
explained

The NIST SHA-3 security requirements explained

m Do not express what would be useful
m But what can hopefully be achieved by Merkle-Damgard

m collision-resistance: that of ideal compression function
B pre-image: appears achievable for basic case
m 2nd pre-image: used to be 2" but adapted after ...

m Wave of generic attacks against Merkle-Damgard

Joux (2004): Multicollisions
Kelsey and Schneier (2005): 2nd pre-image attacks
Kohno and Kelsey (2006): Herding attacks

[
u
m ..
m All use internal collisions due to narrow pipe

37/39

Hashing and sponge functions Part 1: What we have and what we need

LConclusions

Outline

A cConclusions

38/39

Hashing and sponge functions Part 1: What we have and what we need

Conclusions

Conclusions

m Monoculture has resulted in hashing confidence crisis
B ARX less secure than expected
m Merkle-Damgard less sound than believed
m NIST calls out for help
m addressed to the cryptographic community
m with requirements still deeply rooted in crypto folklore
®m Random sponges allow expressing compact security claims

m express security against all thinkable attacks
m “As good as a random oracle up to some ceiling”
m flat sponge claim appears achievable

39/39

	There is something rotten �
	Short definition
	The mainstream in hash functions
	Internals
	A crisis of confidence

	The SHA-3 contest
	NIST calls out for help
	The deal
	Time schedule

	Hash function security requirements
	Folklore
	Additional requirements
	The challenge of expressing security claims
	Random oracles (RO)
	RO as a security reference
	The problem with RO-based claims
	The finite memory
	Variable-length output
	Towards a compact security claim

	Sponge functions
	The sponge construction
	Random sponges
	Flat sponge claim
	Flat sponge claim explained

	The NIST SHA-3 requirements
	�explained

	Conclusions

