Solving Non-Linear Random Sparse Equations over Finite Fields

Thorsten Schilling

UiB

May 6, 2009

Algebraic Cryptanalysis

- Express cipher as system of equations
- Well known examples: AES, DES, Trivium etc.
- Obtaining solution to systems might break cipher

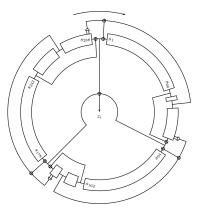
I-sparse Equation System

$$f_1(X_1) = 0, f_2(X_2) = 0, \dots, f_m(X_m) = 0$$

•
$$X_i \subseteq X$$

•
$$|X_i| \leq l$$

Example Trivium



- 80 bits IV, 80 bits key
- 288 bits internal state
- Output bit is linear combination of state bits
- Overall very "simple" design

Example Trivium (2)

Expressed as equation system

$$a_{i} = c_{i-66} + c_{i-111} + c_{i-110}c_{i-109} + a_{i-69}$$

$$b_{i} = a_{i-66} + a_{i-93} + a_{i-92}a_{i-91} + b_{i-78}$$

$$c_{i} = b_{i-69} + b_{i-84} + b_{i-83}b_{i-82} + c_{i-87}$$

Output bit z_i

$$z_i = c_{i-66} + c_{i-111} + a_{i-66} + a_{i-93} + b_{i-69} + b_{i-84}$$

Example Trivium (2)

Expressed as equation system

$$a_{i} = c_{i-66} + c_{i-111} + c_{i-110}c_{i-109} + a_{i-69}$$

$$b_{i} = a_{i-66} + a_{i-93} + a_{i-92}a_{i-91} + b_{i-78}$$

$$c_{i} = b_{i-69} + b_{i-84} + b_{i-83}b_{i-82} + c_{i-87}$$

Output bit zi

$$z_i = c_{i-66} + c_{i-111} + a_{i-66} + a_{i-93} + b_{i-69} + b_{i-84}$$

 \rightarrow For state recovery solve system:

- 6-sparse
- 951 variables
- 663 quadric equations, 288 linear

Solving Strategies

- Linearization
- Gröbner Basis Algorithms

Solving Strategies

- Linearization
- Gröbner Basis Algorithms
- SAT-Solving
 - ► Is $\phi = (x_i \lor x_j \lor \ldots \lor x_k) \land \ldots \land (x_u \lor x_v \lor \ldots \lor x_w)$ SAT?
 - Theoretical worst case bounds [lwama,04]:

sparsity	3	4	5	6
worst case	1.324 ⁿ	1.474 ⁿ	1.569 ⁿ	1.637 ⁿ

Solving Strategies

- Linearization
- Gröbner Basis Algorithms
- SAT-Solving
 - ► Is $\phi = (x_i \lor x_j \lor \ldots \lor x_k) \land \ldots \land (x_u \lor x_v \lor \ldots \lor x_w)$ SAT?
 - Theoretical worst case bounds [lwama,04]:

sparsity	3	4	5	6
worst case	1.324 ⁿ	1.474 ⁿ	1.569 ⁿ	1.637 ⁿ

- Gluing & Agreeing [Raddum, Semaev]
 - Expected Running Times:

sparsity	3	4	5	6
Gluing[Semaev,WCC'07]	1.262 ⁿ	1.355 ⁿ	1.425 ⁿ	1.479 ⁿ
AgrGluing[Semaev,ACCT'08]	1.113 ⁿ	1.205 ⁿ	1.276 ⁿ	1.334 ⁿ

SAT-solving - DPLL/Davis-Putnam-Logemann-Loveland

General structure of the algorithm (input ϕ in CNF):

- Extend a partial guess
- Propagate information
- Clause Resolution
- Backtrack if a conflict was detected

Past Major Enhancements

• Algorithmic [Silvia, Sakallah 1996]

- Non-chronological backtracking
- Conflict clauses
- Technical
 - ▶ Watched literals [Moskewicz et. al. 2001]
- Instance specific
 - Guessing heuristics

A New Approach

- Generalization of a backtracking solving method for sparse non-linear equation systems over finite fields
 - CNF-instances are specialization
- Exploit sparsity of equations

Equation as Symbol

- $f(X_i) = 0$ as pair of sets $S_i = (X_i, V_i)$
- X_i variables in which the equation is defined
- V_i its satisfying vectors/assignments

Random equation over \mathbb{F}_2 expected $|V_i| = 2^{|X_i|-1}$

Equation as Symbol

•
$$f(X_i) = 0$$
 as pair of sets $S_i = (X_i, V_i)$

- X_i variables in which the equation is defined
- V_i its satisfying vectors/assignments

Random equation over \mathbb{F}_2 expected $|V_i| = 2^{|X_i|-1}$

Example:

$$f_e(x_1, x_2, x_3) = x_1 x_2 \oplus x_3 = 0$$

becomes

S_e	x_1	<i>x</i> ₂	<i>x</i> 3
<i>a</i> 0	0	0	0
a_1	0	1	0
a 2	1	0	0
a ₃	1	1	1

Gluing

Create new symbol $S_1 \circ S_2 = (X_1 \cup X_2, U)$ from two symbols S_1, S_2 where

 $U = \{(a_1, b, a_2) | (a_1, b) \in V_1 \text{ and } (b, a_2) \in V_2\}$

Gluing

Create new symbol $S_1 \circ S_2 = (X_1 \cup X_2, U)$ from two symbols S_1, S_2 where

$$U = \{(a_1, b, a_2) | (a_1, b) \in V_1 \text{ and } (b, a_2) \in V_2\}$$

Example:

S_0	1	2	3	_	S_1 b_0 b_1 b_2	२	1	5		$S_0 \circ S_1$	1	2	२	Л	5
20	0	0	0	-	\mathcal{I}	5	-	5		$J_0 \cup J_1$		2	5	-	5
u 0					b_0	1	0	0		C1	1	1	1	0	0
a ₁	0	1	0	0					=	-1					
-	1				b_1	1	0	1		c_2	1	1	1	0	1
a ₂		0	0		L	1	1	1		-	1	1	1	1	1
a ₃	1	1	1		D2	1	1	L		C ₁ C ₂ C ₃	1	1	1	1	L

Agreeing

Delete from symbols S_1, S_2 vectors whose projections do not match in their common variables $X_1 \cap X_2$. If symbol gets "empty" \rightarrow contradiction.

Agreeing

Delete from symbols S_1, S_2 vectors whose projections do not match in their common variables $X_1 \cap X_2$. If symbol gets "empty" \rightarrow contradiction.

Example:

Gluing-Agreeing Algorithm

Glue intermediate symbol with another symbol, then agree the intermediate equation system.

Aim: Reduce number of steps for Agreeing

Addresses of common projections stored as tuples

Mark groups of common projections

Example: a_0, a_1, a_3 marked $\Rightarrow b_1, b_2, b_3$ marked

 $\{a_0, a_1, a_2; b_0\}, \{a_3; b_1, b_2, b_3\}$

S_0	1	2	3	S_1	3	4	5
a ₀	0	0	0	b_0	0	0	0
a_1	0	1	0,	b_1	1	0	0
a ₂	1	0	0	<i>b</i> ₂	1	0	1
a ₃	1	1	1	$ \begin{array}{c} b_0 \\ b_1 \\ b_2 \\ b_3 \end{array} $	1	1	1

$\{a_0, a_1, a_2; b_0\}, \{a_3; b_1, b_2, b_3\}$								
S_0	1	2	3	$\frac{S_1}{b_0}$	3	4	5	
a ₂	1	0	0	b_0	0	0	0	

Agreeing2

Advantages

- Information propagation through tuples
- Asymptotically faster
- Overhead for reading and writing decreases

Continous Implicit Agreeing

- Tree search through possible Gluings
- Works only on tuple markings
- Keep obtained knowledge
 - Persistent marking
- Flexible in the Gluing order

General Algorithm

- Pick symbol
- Ø Mark all yet unmarked assignments, except one
 - Guess assignment
- 8 Run Agreeing2
- Backtrack on contradiction

Guessing Heuristics

- Which symbol keeps search tree narrow
- Gluing complexity roughly $2^{\max_i |X(i)|-i} \to \text{sort}$ and keep $|X(i)| i = |X_0 \cup X_1 \cup \ldots X_i| i$ low
- Better: choose symbol with smallest |V_i| (only unmarked assignments)
- Other heuristics possible, e.g. maximum $|X_i|/|V_i|$ etc.

Example Result

n = m = 150, l = 5

MiniSA	Т	dynglue			
Decisions	6844	Guesses	1549		
Conflicts	5046	Contradictions	280		
Propagations	120239	Tuple Propagations	541128		
Time	0.15s	Time	0.08s		

Open Questions

- Conflict handling
- Learning
 - Dynamic
 - Static
- Heuristics
 - Random systems
 - Equation systems from ciphers

