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Motivation Algebraic Cryptanalysis

Algebraic Cryptanalysis

Express cipher as system of equations

Well known examples: AES, DES, Trivium etc.

Obtaining solution to systems might break cipher
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Motivation Algebraic Cryptanalysis

l-sparse Equation System

f1(X1) = 0, f2(X2) = 0, . . . , fm(Xm) = 0

Xi ⊆ X

|Xi | ≤ l
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Motivation Example

Example Trivium

80 bits IV, 80 bits key

288 bits internal state

Output bit is linear combination of state bits

Overall very ”simple” design
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Motivation Example

Example Trivium (2)

Expressed as equation system

ai = ci−66 + ci−111 + ci−110ci−109 + ai−69

bi = ai−66 + ai−93 + ai−92ai−91 + bi−78

ci = bi−69 + bi−84 + bi−83bi−82 + ci−87

Output bit zi

zi = ci−66 + ci−111 + ai−66 + ai−93 + bi−69 + bi−84

→ For state recovery solve system:

6-sparse

951 variables

663 quadric equations, 288 linear
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Solving Strategies Introduction

Solving Strategies

Linearization

Gröbner Basis Algorithms

SAT-Solving
I Is φ = (xi ∨ xj ∨ . . . ∨ xk) ∧ . . . ∧ (xu ∨ xv ∨ . . . ∨ xw ) SAT?
I Theoretical worst case bounds [Iwama,04]:

sparsity 3 4 5 6
worst case 1.324n 1.474n 1.569n 1.637n

Gluing & Agreeing [Raddum, Semaev]
I Expected Running Times:

sparsity 3 4 5 6
Gluing[Semaev,WCC’07] 1.262n 1.355n 1.425n 1.479n

Agr.-Gluing[Semaev,ACCT’08] 1.113n 1.205n 1.276n 1.334n
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Solving Strategies SAT-solving

SAT-solving - DPLL/Davis-Putnam-Logemann-Loveland

General structure of the algorithm (input φ in CNF):

Extend a partial guess

Propagate information

Clause Resolution

Backtrack if a conflict was detected
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Solving Strategies SAT-solving

Past Major Enhancements

Algorithmic [Silvia, Sakallah 1996]
I Non-chronological backtracking
I Conflict clauses

Technical
I Watched literals [Moskewicz et. al. 2001]

Instance specific
I Guessing heuristics
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Gluing & Agreeing Introduction

A New Approach

Generalization of a backtracking solving method for sparse non-linear
equation systems over finite fields

I CNF-instances are specialization

Exploit sparsity of equations
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Gluing & Agreeing Representation

Equation as Symbol

f (Xi ) = 0 as pair of sets Si = (Xi ,Vi )

Xi variables in which the equation is defined

Vi its satisfying vectors/assignments

Random equation over F2 expected |Vi | = 2|Xi |−1

Example:
fe(x1, x2, x3) = x1x2 ⊕ x3 = 0

becomes
Se x1 x2 x3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

Thorsten Schilling (UiB) Solving Equations over Finite Fields May 6, 2009 10 / 21



Gluing & Agreeing Representation

Equation as Symbol

f (Xi ) = 0 as pair of sets Si = (Xi ,Vi )

Xi variables in which the equation is defined

Vi its satisfying vectors/assignments

Random equation over F2 expected |Vi | = 2|Xi |−1

Example:
fe(x1, x2, x3) = x1x2 ⊕ x3 = 0

becomes
Se x1 x2 x3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

Thorsten Schilling (UiB) Solving Equations over Finite Fields May 6, 2009 10 / 21



Gluing & Agreeing Fundamental Operations

Gluing

Create new symbol S1 ◦ S2 = (X1 ∪ X2,U) from two symbols S1, S2 where

U = {(a1, b, a2)|(a1, b) ∈ V1 and (b, a2) ∈ V2}

Example:

S0 1 2 3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

◦

S1 3 4 5

b0 1 0 0
b1 1 0 1
b2 1 1 1

=

S0 ◦ S1 1 2 3 4 5

c1 1 1 1 0 0
c2 1 1 1 0 1
c3 1 1 1 1 1
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Gluing & Agreeing Fundamental Operations

Agreeing

Delete from symbols S1, S2 vectors whose projections do not match in
their common variables X1 ∩ X2. If symbol gets ”empty” → contradiction.

Example:

S0 1 2 3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

,

S1 3 4 5

b0 1 0 0
b1 1 0 1
b2 1 1 1

become
S0 1 2 3

a3 1 1 1
,

S1 3 4 5

b0 1 0 0
b1 1 0 1
b2 1 1 1

Thorsten Schilling (UiB) Solving Equations over Finite Fields May 6, 2009 12 / 21



Gluing & Agreeing Fundamental Operations

Agreeing

Delete from symbols S1, S2 vectors whose projections do not match in
their common variables X1 ∩ X2. If symbol gets ”empty” → contradiction.

Example:

S0 1 2 3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

,

S1 3 4 5

b0 1 0 0
b1 1 0 1
b2 1 1 1

become
S0 1 2 3

a3 1 1 1
,

S1 3 4 5

b0 1 0 0
b1 1 0 1
b2 1 1 1

Thorsten Schilling (UiB) Solving Equations over Finite Fields May 6, 2009 12 / 21



Gluing & Agreeing Fundamental Operations

Gluing-Agreeing Algorithm

Glue intermediate symbol with another symbol, then agree the
intermediate equation system.
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Gluing & Agreeing Agreeing2

Agreeing2

Aim: Reduce number of steps for Agreeing

Addresses of common projections stored as tuples

S0 1 2 3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

,

S1 3 4 5

b0 0 0 0
b1 1 0 0
b2 1 0 1
b3 1 1 1

→ {a0, a1, a2; b0}, {a3; b1, b2, b3}
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Gluing & Agreeing Agreeing2

Mark groups of common projections

Example: a0, a1, a3 marked ⇒ b1, b2, b3 marked

{a0, a1, a2; b0}, {a3; b1, b2, b3}

S0 1 2 3

a0 0 0 0
a1 0 1 0
a2 1 0 0
a3 1 1 1

,

S1 3 4 5

b0 0 0 0
b1 1 0 0
b2 1 0 1
b3 1 1 1

{��a0,��a1, a2; b0}, {��a3;��b1,��b2,��b3}

S0 1 2 3

a2 1 0 0
,

S1 3 4 5

b0 0 0 0
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Gluing & Agreeing Agreeing2

Agreeing2

Advantages

Information propagation through tuples

Asymptotically faster

Overhead for reading and writing decreases
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Dynamic Gluing Continuos Implicit Agreeing

Continous Implicit Agreeing

Tree search through possible Gluings

Works only on tuple markings

Keep obtained knowledge
I Persistent marking

Flexible in the Gluing order
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Dynamic Gluing Continuos Implicit Agreeing

General Algorithm

1 Pick symbol
2 Mark all yet unmarked assignments, except one

I Guess assignment

3 Run Agreeing2

4 Backtrack on contradiction
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Dynamic Gluing Guessing Heuristics vs. Sorting

Guessing Heuristics

Which symbol keeps search tree narrow

Gluing complexity roughly 2maxi |X (i)|−i → sort and keep
|X (i)| − i = |X0 ∪ X1 ∪ . . .Xi | − i low

Better: choose symbol with smallest |Vi | (only unmarked
assignments)

Other heuristics possible, e.g. maximum |Xi |/|Vi | etc.
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Results

Example Result

n = m = 150, l = 5

MiniSAT dynglue

Decisions 6844 Guesses 1549
Conflicts 5046 Contradictions 280
Propagations 120239 Tuple Propagations 541128
Time 0.15s Time 0.08s
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Open Questions

Open Questions

Conflict handling

Learning
I Dynamic
I Static

Heuristics
I Random systems
I Equation systems from ciphers
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