

Hash Functions at Finse 1222

Lars R. Knudsen, Professor
 2001- Technical University of Denmark
 2002-2007 University of Bergen, Norway, Professor II
 1997-2001 University of Bergen, Norway
 1995-1997 Katholieke Universiteit, Leuven, Belgium
 1994-1995 Ecole Normal Superieure, Paris, France
 1992-1994 PhD at Aarhus University of Denmark

Applications

2/36

Iterated hash functions

Iterated hash functions

HMAC - Hash Message Authentication Code

MAC of message x is:

$$MAC_{\mathcal{K}}(x) = H(K_2 \mid H(K_1 \mid x))$$

Applications

Properties

Properties

With H=SHA-1, K_1 and K_2 , derived from 512-bit K:

 $K_1 = K \oplus 363636....36$ $K_2 = K \oplus 5C5C5C....5C,$

HMAC secure if

■ *H* is collision resistant for secret initial value, and

Applications

■ *H* is a secure MAC for one-block messages.

9 / 36

Iterated hash functions

Password protection

User id	H(password)
La, Shangri	09283409283977
Lan, Magel	01265743912917
Lang, Serge	02973477712981
Lange, Tanja	92837540921835
Langer, Bernhard	98240254444422

Properties

Problem: Parallel attack?!

Password protection, cont.

User id	Salt	H(password, salt)
La, Shangri	68678927431	09283409283977
Lan, Magel	0000000001	01265743912917
Lang, Serge	23092839482	02973477712981
Lange, Tanja	30092341218	92837540921835
Langer, Bernhard	86769872349	98240254444422

It should be "hard" to find preimage of H

10/36

Iterated hash functions

Iterated hash functions

Trivial (brute-force) attacks
Preimage attack for $H : \{0,1\}^* \rightarrow \{0,1\}^n$ a given $y = H(x)$
• let $\mathcal{X} = \{x_1, \dots, x_q\}$
for $x' \in \mathcal{X}$ if $H(x') = y$ then success
Probability of success:
$1 - (1 - 2^{-n})^q$
With $q = 2^n$ probability of success $1 - (1 - 2^{-n})^{2^n} \approx 0.63$

Introduction	Definition	Арр	lications	Properties	Iterated hash function
Trivial (h	rute-force) a	ottac	<u></u>		
	fulle-force a	illaci	N 5		
		n	$(1-2^{-n})^2$	n	
		5	0.6379		
		10	0.6323		
		15	0.6321		
		20	0.6321		
		q	$1 - (1 - 2^{-1})$	- <i>n</i>) <i>q</i>	
		2^{n-1}	0.3935		
		2 ⁿ	0.6321		
		2^{n+1}	0.8647		
		2^{n+2}	0.9817		

19 / 36

Trivial (brute-force) attacks

Definition

2nd preimage attack for $H : \{0,1\}^* \rightarrow \{0,1\}^n$

- given x and y = H(x)
- let $\mathcal{X} = \{x_1, \dots, x_q\}$, s.t., $x \notin \mathcal{X}$
- for $x' \in \mathcal{X}$ if H(x') = y then success

Probability of success:

$$1 - (1 - 2^{-n})^q$$

With
$$q = 2^n$$
 probability of success $1 - (1 - 2^{-n})^{2^n} \approx 0.63$

Trivial (brute-force) attacks

Definition

collision attack for $H : \{0,1\}^* \to \{0,1\}^n$ **a** let $\mathcal{X} = \{x_1, \dots, x_q\}$, **b** let $\mathcal{Y} = \{y_1, \dots, y_q\}$, where $y_i = H(x_i)$ **a** if $y_i = y_j$ for some $i \neq j$ then success Probability of success: $1 - e^{\frac{q(q-1)}{2\cdot 2^n}}$

Applications

Properties

With $q = \sqrt{2} \cdot 2^{n/2}$ one gets probability of success of $1 - e^{-1} \approx 0.63$

22 / 36

Iterated hash functions

Birthday paradox

Choose q elements at random (with replacements) from set of S random elements, where $q \ll S$ Let p be probability of at least one collision

$$1-p = 1 \cdot \frac{S-1}{S} \cdot \frac{S-2}{S} \cdots \frac{S-(q-1)}{S}$$
$$= \prod_{k=1}^{q-1} \left(1 - \frac{k}{S}\right)$$
$$\approx \prod_{k=1}^{q-1} \exp\left(-\frac{k}{S}\right) = \exp\left(-\frac{q(q-1)}{2S}\right)$$

NB. $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots$

Introduction	Definition	Applications	Properties	Iterated hash fu
Birthday	paradox (2)			

$$p \approx 1 - \exp\left(-\frac{q(q-1)}{2S}\right) = 1 - e^{-\frac{q(q-1)}{2S}}$$

pprox p
50%
63%
86%
99.99%

birthday paradox: (S,q) = (365,23), $p \approx 1/2$

21/36

Iterated hash functions

Iterated hash functions

Properties

Properties

Birthday paradox used on hash functions

Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^n$

Definition

1 choose $q = 2^{(n+1)/2} = \sqrt{2} \cdot 2^{n/2}$ randomly chosen inputs each of at least (n+1)/2 bits

Applications

Properties

2 compute hash values for all k inputs

Prob(at least one collision) =

$$p \approx 1 - \exp\left(-rac{q(q-1)}{2 \cdot 2^n}
ight) pprox 1 - e^{-1} \simeq 0.63$$

Cryptographic hash functions - generic attacks

Applications

Properties

Iterated hash functions

 $H: \{0,1\}^* \rightarrow \{0,1\}^n$, fixed value of *n*

Definition

attack	rough complexity
collision 2nd preimage	$\frac{\sqrt{2^n}}{2^n} = 2^{n/2}$
preimage	2 ⁿ

Today: $n \ge 160$ is recommended Aim: no better attacks than generic attacks

NB. Given 2^k hashed messages, effort to find 2nd preimage of ≥ 1 of them is 2^{n-k} (Merkle)

26 / 36

IntroductionDefinitionApplicationsPropertiesIterated hash functionsReductionsH : $\{0,1\}^* \rightarrow \{0,1\}^n$, for fixed value of nIn random oracle model:= 2nd preimage attack for $H \Rightarrow$ collision attack for H= preimage attack for $H \Rightarrow$ collision attack for Hwhich leads to= collisions hard \Rightarrow 2nd preimages and preimages hard

Introduction	Definition	Applications	Properties	Iterated hash functions
Iterated I	nash functio	ns		
Compre	ession function			
oopr		$\{0,1\}^N o \{0,1\}$	$\{n\}^n, N > n$	
Constru				
		$H: \{0,1\}^M \to \{0,1\}^M$	$\{0,1\}'',$	
where	M >> N from	h		

27 / 36

25 / 36

Iterated hash functions

$H(x_1)$	$)=H(x_2)$) = =	H(Xat).
	,	,		~~~ I	"

- In general: time $(2^t!2^{n(2^t-1)})^{1/2^t}$
- For iterated hash functions: time $t2^{n/2}$

 $\sqrt{2^n} = 2^{n/2}$

 $k2^{n/2} + 2^{n-k}$

2ⁿ

collision

preimage

2nd preimage

30 / 36

Theoretical results on Merkle-Damgård iterated hashing

- **1** *h* is collision-resistant \Rightarrow *H* is collision-resistant (MD)
- **2** *h* is random oracle \Rightarrow *H* is random oracle ?
- **3** Coron et al 05: construction satisfying 2.
- 4 Bellare-Ristenpart 06: construction satisfying both 1. and 2.
- 5 much recent work in this direction

Practical extensions to Merkle-Damgård

- Add output transformation. ÷ extension attack
- Large internal state (such that $2^{n/2}$ is huge).
 - ÷ multi-collision attack
 - \div 2nd preimage attacks
- Add weak second chain (e.g. checksum in MD2) Does not protect against 2nd preimage attacks (Gauravaram, Kelsey, Knudsen, Thomsen, 2008)
- Lucks (2005)
 - wide-pipe: large internal state, plus compress in output trans
 - \blacksquare double pipe: two parallel chains, combined in output trans
- Counters? Salts?