Towards a new US government hash function

 standardLars R. Knudsen

May 5, 2009

Introduction \quad Definition \quad Applications	Properties
Hash Functions at Finse 1222	Iterated hash functions
1 Introduction	
2 Block-cipher based hashing	
3 MD4-family, SHA-1, SHA-2, SHA-3	
4 Permutation-based hashing and Grøstl	

1 Lars R. Knudsen, Professor
[2001- Technical University of Denmark
3 2002-2007 University of Bergen, Norway, Professor II
4 1997-2001 University of Bergen, Norway
5 1995-1997 Katholieke Universiteit, Leuven, Belgium
6 1994-1995 Ecole Normal Superieure, Paris, France
7 1992-1994 PhD at Aarhus University of Denmark

Hash Functions at Finse 1222

| Introduction | Definition | Applications | Properties |
| :--- | :--- | :--- | :--- | Iterated hash functions

■ $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, for fixed value of n
■ no secret parameters

- given x, easy to compute $H(x)$
- Often in practice:
$H:\{0,1\}^{M} \rightarrow\{0,1\}^{n}$, for fixed value of n, big M
- play a crucial role in cryptography
- many applications
- a hash function
- is a many-to-one function
- should appear to be one-to-one in practice

Cryptographic hash functions

should appear to be one-to-one in practice

■ Message authentication codes, HMAC

- Password protection, Unix
- Digital signatures
- As random oracle in various protocols, RSA-OAEP, RSA-PSS, PKCS \#1, v2.1
- Pseudo-random generator (key-derivation), DSS

■ ...

Hash function properties

$H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, for fixed value of n
Definitions

- preimage, given $H(x)$, find x^{\prime} s.t. $H(x)=H\left(x^{\prime}\right)$

■ 2nd preimage, given x, find $x^{\prime} \neq x$ s.t. $H(x)=H\left(x^{\prime}\right)$
■ collision, $x \neq x^{\prime}$, s.t. $H(x)=H\left(x^{\prime}\right)$

HMAC - Hash Message Authentication Code

MAC of message x is:

$$
\operatorname{MAC}_{K}(x)=H\left(K_{2} \mid H\left(K_{1} \mid x\right)\right)
$$

With $\mathrm{H}=\mathrm{SHA}-1, K_{1}$ and K_{2}, derived from 512 -bit K :

$$
\begin{aligned}
& K_{1}=K \oplus 363636 \ldots . .36 \\
& K_{2}=K \oplus 5 C 5 C 5 C \ldots .5 C
\end{aligned}
$$

HMAC secure if

- H is collision resistant for secret initial value, and
- H is a secure MAC for one-block messages.

- Problem: Parallel attack?

Intro	Definition	Applications	Properties Herated
Password protection, cont.			
	User id	Salt	H(password, salt)
	La, Shangri	68678927431	09283409283977
	Lan, Magel	00000000001	01265743912917
	Lang, Serge	23092839482	02973477712981
	Lange, Tanja	30092341218	92837540921835
	Langer, Bernhard	86769872349	98240254444422

It should be "hard" to find preimage of H

Introduction	Definition	Apprications	Properties	Herated hash functions
Digital signatures (no hashing)				
	Alice m message	$\operatorname{sig}(m), m$	Bob check signatur	

| Introduction \quad Definition Applications | Properties | Iterated hash functions |
| :--- | :--- | :--- | :--- |
| Digital signatures with hashing | | |

Sign $H(m)$ instead of m

$$
\begin{array}{ll}
\text { Alice } & \text { Bob } \\
m \text { message } \\
\text { compute } H(m) & \xrightarrow{\operatorname{sig}(H(m)), m}
\end{array} \begin{aligned}
& \text { compute } H(m) \\
& \text { check signatur on } H(m)
\end{aligned}
$$

Introduction	Definition	Applications	Properties	Hterated hash functions
Attack scenarios - inversion				

Given m and $H(m)$, Eve finds m^{\prime} such that $H(m)=H\left(m^{\prime}\right)$

Alice	Eve	Bob		
$H(m) \xrightarrow{\operatorname{sig}(H(m)), m}$			$\xrightarrow{\operatorname{sig}(H(m)), m^{\prime}}$	compute $H\left(m^{\prime}\right)$
:---				
check sign. on $H\left(m^{\prime}\right)$				

It must be "hard" to find 2nd preimages for H.
Attack scenarios - inversion

Attack scenarios - inversion

If Eve can forge signature on random-looking message \tilde{m} she may find m such that $H(m)=\tilde{m}$

Alice Eve \begin{tabular}{ll}
Bob

\&

\& $\operatorname{sig}(H(m)), m$

compute $H(m)$

check sign. on $H(m)$
\end{tabular}

It must be "hard" to find preimage of H.

Attack scenarios - collisions

Given H, Bob finds m and m^{\prime} such that $H(m)=H\left(m^{\prime}\right)$, tricks Alice into signing m

$$
\begin{array}{cc}
\text { Alice } & \\
H(m) & \text { Bob } \\
& \begin{array}{c}
\operatorname{sig}(H(m)), m \\
\text {..later.. }
\end{array}
\end{array} \begin{aligned}
& \text { compute } H(m) \\
& \text { check signatur on } H(m)
\end{aligned}
$$

It must be "hard" to find collisions for H.

Random Oracle Model

Let $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$ be a hash function.
Random Oracle Model:
■ the values $H(x)$ are "random": for any x and $y \in\{0,1\}^{n}$

$$
\operatorname{Pr}(H(x)=y)=2^{-n}
$$

- let $\mathcal{X}=\left\{x_{1}, \ldots, x_{t}\right\}$, if $H\left(x_{1}\right), H\left(x_{2}\right), \ldots, H\left(x_{t}\right)$ known by attacker, for any $x \notin \mathcal{X}$ and $y \in\{0,1\}^{n}$

$$
\operatorname{Pr}(H(x)=y)=2^{-n}
$$

| Introduction | Definition | Applications | Properties |
| :--- | :---: | :---: | :---: | Iterated hash functions

Preimage attack for $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- given $y=H(x)$

■ let $\mathcal{X}=\left\{x_{1}, \ldots, x_{q}\right\}$

- for $x^{\prime} \in \mathcal{X}$ if $H\left(x^{\prime}\right)=y$ then success

Probability of success:

$$
1-\left(1-2^{-n}\right)^{q}
$$

With $q=2^{n}$ probability of success $1-\left(1-2^{-n}\right)^{2^{n}} \approx 0.63$

| Introduction | Definition | Applications | Properties |
| :--- | :--- | :--- | :--- | Herated hash functions

n	$\left(1-2^{-n}\right)^{2^{n}}$
5	0.6379
10	0.6323
15	0.6321
20	0.6321

q	$1-\left(1-2^{-n}\right)^{q}$
2^{n-1}	0.3935
2^{n}	0.6321
2^{n+1}	0.8647
2^{n+2}	0.9817

Trivial (brute-force) attacks

2nd preimage attack for $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- given x and $y=H(x)$

■ let $\mathcal{X}=\left\{x_{1}, \ldots, x_{q}\right\}$, s.t., $x \notin \mathcal{X}$

- for $x^{\prime} \in \mathcal{X}$ if $H\left(x^{\prime}\right)=y$ then success

Probability of success:

$$
1-\left(1-2^{-n}\right)^{q}
$$

With $q=2^{n}$ probability of success $1-\left(1-2^{-n}\right)^{2^{n}} \approx 0.63$

Trivial (brute-force) attacks

collision attack for $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$

- let $\mathcal{X}=\left\{x_{1}, \ldots, x_{q}\right\}$,

■ let $\mathcal{Y}=\left\{y_{1}, \ldots, y_{q}\right\}$, where $y_{i}=H\left(x_{i}\right)$

- if $y_{i}=y_{j}$ for some $i \neq j$ then success

Probability of success:

$$
1-e^{\frac{q(q-1)}{2 \cdot 2^{n}}}
$$

With $q=\sqrt{2} \cdot 2^{n / 2}$ one gets probability of success of $1-e^{-1} \approx 0.63$

Choose q elements at random (with replacements) from set of S random elements, where $q \ll S$
Let p be probability of at least one collision

$$
\begin{aligned}
1-p & =1 \cdot \frac{S-1}{S} \cdot \frac{S-2}{S} \cdots \frac{S-(q-1)}{S} \\
& =\prod_{k=1}^{q-1}\left(1-\frac{k}{S}\right) \\
& \approx \prod_{k=1}^{q-1} \exp \left(-\frac{k}{S}\right)=\exp \left(-\frac{q(q-1)}{2 S}\right)
\end{aligned}
$$

NB. $e^{-x}=1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\frac{x^{4}}{4!}-\ldots$

Birthday paradox used on hash functions

Hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$
1 choose $q=2^{(n+1) / 2}=\sqrt{2} \cdot 2^{n / 2}$ randomly chosen inputs each of at least $(n+1) / 2$ bits

2 compute hash values for all k inputs
$\operatorname{Prob}($ at least one collision $)=$

$$
p \approx 1-\exp \left(-\frac{q(q-1)}{2 \cdot 2^{n}}\right) \approx 1-e^{-1} \simeq 0.63
$$

Cryptographic hash functions - generic attacks

$H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, fixed value of n

attack	rough complexity
collision	$\sqrt{2^{n}}=2^{n / 2}$
2nd preimage	2^{n}
preimage	2^{n}

Today: $n \geq 160$ is recommended
Aim: no better attacks than generic attacks
NB. Given 2^{k} hashed messages, effort to find 2 nd preimage of ≥ 1 of them is 2^{n-k} (Merkle)

| Introduction | Definition | Applications | Properties |
| :--- | :--- | :--- | :--- | Iterated hash functions

$H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$, for fixed value of n
In random oracle model:

- 2nd preimage attack for $H \Rightarrow$ collision attack for H
- preimage attack for $H \Rightarrow$ collision attack for H
which leads to
- collisions hard $\Rightarrow 2$ nd preimages and preimages hard

Compression function

$$
h:\{0,1\}^{N} \rightarrow\{0,1\}^{n}, N>n
$$

Construct

$$
H:\{0,1\}^{M} \rightarrow\{0,1\}^{n},
$$

where $M \gg N$ from h

Iterated hash function

Extending hash functions - Merkle-Damgård

Padding-rule: $x \neq y \Rightarrow \operatorname{pad}(x) \neq \operatorname{pad}(y)$
Construct H from h :
1 let $x \in\{0,1\}^{v}$ be message
$\boxed{2}$ apply padding rule such that

$$
x=x_{1}\left|x_{2}\right| \ldots\left|x_{t-1}\right| x_{t}
$$

where x_{t} full block which contains the integer v as a string
3 define $h_{0}=I V$ and $h_{i}=h\left(x_{i}, h_{i-1}\right)$ for $1 \leq i \leq t$
4 define $H(x)=h_{t}$
Theorem: collision for $H \Rightarrow$ collision for h

Given hashed messages with 2^{k} message blocks, effort to find 2nd preimage is $\simeq k 2^{n / 2}+2^{n-k}$ (Dean, Kelsey-Schneier)

attack	rough complexity
collision	$\sqrt{2^{n}}=2^{n / 2}$
2nd preimage	$k 2^{n / 2}+2^{n-k}$
preimage	2^{n}

■ Extension attack. Given $x \neq x^{\prime}$ such that $H(x)=H\left(x^{\prime}\right)$ then $H(x \mid y)=H\left(x^{\prime} \mid y\right)$

- Multi-collisions. $x_{1}, \ldots, x_{2^{t}}$ s.t.

$$
H\left(x_{1}\right)=H\left(x_{2}\right)=\ldots=H\left(x_{2}\right),
$$

- In general: time $\left(2^{t}!2^{n\left(2^{t}-1\right)}\right)^{1 / 2^{t}}$
- For iterated hash functions: time $t 2^{n / 2}$

Iterated hash functions - multi-collisions

- assume x_{1} and x_{1}^{\prime} is a collision for h using H_{0}
- assume x_{2} and x_{2}^{\prime} is a collision for h using H_{1}
- assume x_{3} and x_{3}^{\prime} is a collision for h using H_{2}
- leads to eight collisions for H
- with hash size $n=256$, complexity is $\approx 2^{130}$ compared to 2^{226}
- Coppersmith 85
- $F(m)=G(m) \mid H(m)$, where
- G hash function of n bits
- H iterated hash function of n bits

■ Find $2^{n / 2}$-collision on H in multi-collision attack.

- One of these gives collision also for $G \Rightarrow$ Collision for F with effort $(n / 2) 2^{n / 2}$.
- Joux 2004

Introduction Definition Applications Properties Iterated hash functions
 Theoretical results on Merkle-Damgård iterated hashing

$1 h$ is collision-resistant $\Rightarrow H$ is collision-resistant (MD)
$\sqrt{2} h$ is random oracle $\Rightarrow H$ is random oracle ?
3 Coron et al 05: construction satisfying 2.
4 Bellare-Ristenpart 06: construction satisfying both 1 . and 2.
5 much recent work in this direction

Concatenated hash function - collision

Introduction
 Definition
 Applications
 Properties
 Practical extensions to Merkle-Damgård

Iterated hash functions

- Add output transformation. \div extension attack
- Large internal state (such that $2^{n / 2}$ is huge).
\div multi-collision attack
\div 2nd preimage attacks
- Add weak second chain (e.g. checksum in MD2)

Does not protect against 2nd preimage attacks
(Gauravaram, Kelsey, Knudsen, Thomsen, 2008)

- Lucks (2005)
- wide-pipe: large internal state, plus compress in output trans
- double pipe: two parallel chains, combined in output trans

Counters? Salts?

