
Introduction Definition Applications Properties Iterated hash functions

Towards a new US government hash function
standard

Lars R. Knudsen

May 5, 2009

1 / 36

Introduction Definition Applications Properties Iterated hash functions

Hash Functions at Finse 1222

1 Lars R. Knudsen, Professor

2 2001- Technical University of Denmark

3 2002-2007 University of Bergen, Norway, Professor II

4 1997-2001 University of Bergen, Norway

5 1995-1997 Katholieke Universiteit, Leuven, Belgium

6 1994-1995 Ecole Normal Superieure, Paris, France

7 1992-1994 PhD at Aarhus University of Denmark

2 / 36

Introduction Definition Applications Properties Iterated hash functions

Hash Functions at Finse 1222

1 Introduction

2 Block-cipher based hashing

3 MD4-family, SHA-1, SHA-2, SHA-3

4 Permutation-based hashing and Grøstl

3 / 36

Introduction Definition Applications Properties Iterated hash functions

1 Introduction

2 Definition

3 Applications

4 Properties

5 Iterated hash functions

4 / 36

Introduction Definition Applications Properties Iterated hash functions

Definition - hash function

�

Located in the southernmost part of Eu-
rope with an artic climate, Hotel Finse
1222 provides the perfect opportunity for
great adventures and dramatic experiences
in one of the most wild and beautiful parts
of the Norwegian Mountains. Both sum-
mer and winter Hotel Finse 1222 is the
gateway to two of Europe’s most spectac-
ular National Parks and the prime resort
for everyone who desires the beauty and
solitude of mountains and glaciers. Finse
is located 1222 meter above sea level,
between the dramatic Hardangerjkulen
Glacier and the enormous Hallingskarvet
Mountain Range. Finse is only accessible

H
� 10110...1000

H : {0, 1}∗ → {0, 1}n, for fixed value of n

5 / 36

Introduction Definition Applications Properties Iterated hash functions

Cryptographic hash functions

play a crucial role in cryptography

many applications

a hash function

is a many-to-one function

should appear to be one-to-one in practice

6 / 36

Introduction Definition Applications Properties Iterated hash functions

Definition - more

H : {0, 1}∗ → {0, 1}n, for fixed value of n

no secret parameters

given x , easy to compute H(x)

Often in practice:
H : {0, 1}M → {0, 1}n, for fixed value of n, big M

7 / 36

Introduction Definition Applications Properties Iterated hash functions

Hash Function Applications

Message authentication codes, HMAC

Password protection, Unix

Digital signatures

As random oracle in various protocols, RSA-OAEP, RSA-PSS,
PKCS #1, v2.1

Pseudo-random generator (key-derivation), DSS

...

8 / 36

Introduction Definition Applications Properties Iterated hash functions

Hash function properties

H : {0, 1}∗ → {0, 1}n, for fixed value of n

Definitions

preimage, given H(x), find x ′ s.t. H(x) = H(x ′)

2nd preimage, given x , find x ′ �= x s.t. H(x) = H(x ′)

collision, x �= x ′, s.t. H(x) = H(x ′)

9 / 36

Introduction Definition Applications Properties Iterated hash functions

HMAC - Hash Message Authentication Code

MAC of message x is:

MACK (x) = H(K2 | H(K1 | x))

With H=SHA-1, K1 and K2,derived from 512-bit K :

K1 = K ⊕ 363636....36

K2 = K ⊕ 5C5C5C....5C,

HMAC secure if

H is collision resistant for secret initial value, and

H is a secure MAC for one-block messages.

10 / 36

Introduction Definition Applications Properties Iterated hash functions

Password protection

User id H(password)

.
La, Shangri 09283409283977
Lan, Magel 01265743912917
Lang, Serge 02973477712981
Lange, Tanja 92837540921835
Langer, Bernhard 98240254444422
.

Problem: Parallel attack?!

11 / 36

Introduction Definition Applications Properties Iterated hash functions

Password protection, cont.

User id Salt H(password, salt)

.
La, Shangri 68678927431 09283409283977
Lan, Magel 00000000001 01265743912917
Lang, Serge 23092839482 02973477712981
Lange, Tanja 30092341218 92837540921835
Langer, Bernhard 86769872349 98240254444422
.

It should be “hard” to find preimage of H

12 / 36

Introduction Definition Applications Properties Iterated hash functions

Digital signatures (no hashing)

Alice Bob

m message −
sig(m),m
−−−−−−−−−→ check signatur

13 / 36

Introduction Definition Applications Properties Iterated hash functions

Digital signatures with hashing

Sign H(m) instead of m

Alice Bob

m message

compute H(m) −
sig(H(m)),m
−−−−−−−−−−−→ compute H(m)

check signatur on H(m)

14 / 36

Introduction Definition Applications Properties Iterated hash functions

Attack scenarios - inversion

Given m and H(m), Eve finds m′ such that H(m) = H(m′)

Alice Eve Bob

H(m) −
sig(H(m)),m
−−−−−−−−−−−→ −

sig(H(m)),m′

−−−−−−−−−−−→ compute H(m′)
check sign. on H(m′)

It must be “hard” to find 2nd preimages for H.

15 / 36

Introduction Definition Applications Properties Iterated hash functions

Attack scenarios - inversion

If Eve can forge signature on random-looking message m̃ she may
find m such that H(m) = m̃

Alice Eve Bob

−
sig(H(m)),m
−−−−−−−−−−−→ compute H(m)

check sign. on H(m)

It must be “hard” to find preimage of H.

16 / 36

Introduction Definition Applications Properties Iterated hash functions

Attack scenarios - collisions

Given H, Bob finds m and m′ such that H(m) = H(m′), tricks
Alice into signing m

Alice Bob

H(m) −
sig(H(m)),m
−−−−−−−−−−−→ compute H(m)

check signatur on H(m)

..later..
you signed m′ not m

It must be “hard” to find collisions for H.

17 / 36

Introduction Definition Applications Properties Iterated hash functions

Random Oracle Model

Let H : {0, 1}∗ → {0, 1}n be a hash function.
Random Oracle Model:

the values H(x) are “random”: for any x and y ∈ {0, 1}n

Pr(H(x) = y) = 2−n

let X = {x1, . . . , xt},
if H(x1),H(x2), . . . ,H(xt) known by attacker,
for any x �∈ X and y ∈ {0, 1}n

Pr(H(x) = y) = 2−n

18 / 36

Introduction Definition Applications Properties Iterated hash functions

Trivial (brute-force) attacks

Preimage attack for H : {0, 1}∗ → {0, 1}n

given y = H(x)

let X = {x1, . . . , xq}
for x ′ ∈ X if H(x ′) = y then success

Probability of success:

1− (1− 2−n)q

With q = 2n probability of success 1− (1− 2−n)2
n ≈ 0.63

19 / 36

Introduction Definition Applications Properties Iterated hash functions

Trivial (brute-force) attacks

n (1− 2−n)2
n

5 0.6379
10 0.6323
15 0.6321
20 0.6321

q 1− (1− 2−n)q

2n−1 0.3935
2n 0.6321

2n+1 0.8647

2n+2 0.9817

20 / 36

Introduction Definition Applications Properties Iterated hash functions

Trivial (brute-force) attacks

2nd preimage attack for H : {0, 1}∗ → {0, 1}n

given x and y = H(x)

let X = {x1, . . . , xq}, s.t., x �∈ X
for x ′ ∈ X if H(x ′) = y then success

Probability of success:

1− (1− 2−n)q

With q = 2n probability of success 1− (1− 2−n)2
n ≈ 0.63

21 / 36

Introduction Definition Applications Properties Iterated hash functions

Trivial (brute-force) attacks

collision attack for H : {0, 1}∗ → {0, 1}n

let X = {x1, . . . , xq},
let Y = {y1, . . . , yq}, where yi = H(xi)

if yi = yj for some i �= j then success

Probability of success:

1− e
q(q−1)
2·2n

With q =
√

2 · 2n/2 one gets probability of success of
1− e−1 ≈ 0.63

22 / 36

Introduction Definition Applications Properties Iterated hash functions

Birthday paradox

Choose q elements at random (with replacements) from set of S

random elements, where q � S

Let p be probability of at least one collision

1− p = 1 · S − 1

S
· S − 2

S
· · · S − (q − 1)

S

=

q−1∏
k=1

(
1− k

S

)

≈
q−1∏
k=1

exp(−k

S
) = exp

(
−q(q − 1)

2S

)

NB. e−x = 1− x + x2

2! − x3

3! + x4

4! − . . .

23 / 36

Introduction Definition Applications Properties Iterated hash functions

Birthday paradox (2)

p ≈ 1− exp

(
−q(q − 1)

2S

)
= 1− e−

q(q−1)
2S

q ≈ p

1.17
√

S 50%

1.41
√

S 63%

2
√

S 86%

4
√

S 99.99%

birthday paradox: (S , q) = (365, 23), p ≈ 1/2

24 / 36

Introduction Definition Applications Properties Iterated hash functions

Birthday paradox used on hash functions

Hash function H : {0, 1}∗ → {0, 1}n

1 choose q = 2(n+1)/2 =
√

2 · 2n/2 randomly chosen inputs
each of at least (n + 1)/2 bits

2 compute hash values for all k inputs

Prob(at least one collision) =

p ≈ 1− exp

(
−q(q − 1)

2 · 2n

)
≈ 1− e−1 	 0.63

25 / 36

Introduction Definition Applications Properties Iterated hash functions

Cryptographic hash functions - generic attacks

H : {0, 1}∗ → {0, 1}n, fixed value of n

attack rough complexity

collision
√

2n = 2n/2

2nd preimage 2n

preimage 2n

Today: n ≥ 160 is recommended
Aim: no better attacks than generic attacks

NB. Given 2k hashed messages, effort to find 2nd preimage of ≥ 1
of them is 2n−k (Merkle)

26 / 36

Introduction Definition Applications Properties Iterated hash functions

Reductions

H : {0, 1}∗ → {0, 1}n, for fixed value of n

In random oracle model:

2nd preimage attack for H ⇒ collision attack for H

preimage attack for H ⇒ collision attack for H

which leads to

collisions hard ⇒ 2nd preimages and preimages hard

27 / 36

Introduction Definition Applications Properties Iterated hash functions

Iterated hash functions

Compression function

h : {0, 1}N → {0, 1}n,N > n

Construct
H : {0, 1}M → {0, 1}n,

where M >> N from h

28 / 36

Introduction Definition Applications Properties Iterated hash functions

Iterated hash function slide by S.S.Thomsen

x

x1 x2 x3 x4

H(x)

IV

h

h

h

h

padding

29 / 36

Introduction Definition Applications Properties Iterated hash functions

Extending hash functions - Merkle-Damg̊ard

Padding-rule: x �= y ⇒ pad(x) �= pad(y)
Construct H from h:

1 let x ∈ {0, 1}v be message

2 apply padding rule such that

x = x1 | x2 | . . . | xt−1 | xt

where xt full block which contains the integer v as a string

3 define h0 = IV and hi = h(xi , hi−1) for 1 ≤ i ≤ t

4 define H(x) = ht

Theorem: collision for H ⇒ collision for h

30 / 36

Introduction Definition Applications Properties Iterated hash functions

Properties of iterated hash functions

Given hashed messages with 2k message blocks, effort to find
2nd preimage is 	 k2n/2 + 2n−k (Dean, Kelsey-Schneier)

attack rough complexity

collision
√

2n = 2n/2

2nd preimage k2n/2 + 2n−k

preimage 2n

31 / 36

Introduction Definition Applications Properties Iterated hash functions

Properties of iterated hash functions (2)

Extension attack. Given x �= x ′ such that H(x) = H(x ′)
then H(x | y) = H(x ′ | y)

Multi-collisions. x1, . . . , x2t s.t.

H(x1) = H(x2) = . . . = H(x2t),

In general: time (2t!2n(2t
−1))1/2t

For iterated hash functions: time t2n/2

32 / 36

Introduction Definition Applications Properties Iterated hash functions

Iterated hash functions - multi-collisions

�
� �

�
� �

H0 x1, x ′1

h �
� �

�
� �

H1 x2, x ′2

h �
� �

�
� �

H2 x3, x ′3

h

H3�

assume x1 and x ′1 is a collision for h using H0

assume x2 and x ′2 is a collision for h using H1

assume x3 and x ′3 is a collision for h using H2

leads to eight collisions for H

with hash size n = 256, complexity is ≈ 2130 compared to 2226

Coppersmith 85

33 / 36

Introduction Definition Applications Properties Iterated hash functions

Concatenated hash function - collision

F (m) = G (m) | H(m), where

G hash function of n bits

H iterated hash function of n bits

Find 2n/2-collision on H in multi-collision attack.

One of these gives collision also for G ⇒
Collision for F with effort (n/2)2n/2.

Joux 2004

34 / 36

Introduction Definition Applications Properties Iterated hash functions

Theoretical results on Merkle-Damg̊ard iterated hashing

1 h is collision-resistant ⇒ H is collision-resistant (MD)

2 h is random oracle ⇒ H is random oracle ?

3 Coron et al 05: construction satisfying 2.

4 Bellare-Ristenpart 06: construction satisfying both 1. and 2.

5 much recent work in this direction

35 / 36

Introduction Definition Applications Properties Iterated hash functions

Practical extensions to Merkle-Damg̊ard

Add output transformation. ÷ extension attack

Large internal state (such that 2n/2 is huge).
÷ multi-collision attack
÷ 2nd preimage attacks

Add weak second chain (e.g. checksum in MD2)
Does not protect against 2nd preimage attacks
(Gauravaram, Kelsey, Knudsen, Thomsen, 2008)

Lucks (2005)

wide-pipe: large internal state, plus compress in output trans

double pipe: two parallel chains, combined in output trans

Counters? Salts?

36 / 36

