
Introduction Based on number-theoretic problems VSH Dakota

Hash Functions With Proofs of Security

Lars R. Knudsen

April 21, 2008

1 / 30

Introduction Based on number-theoretic problems VSH Dakota

1 Introduction

2 Based on number-theoretic problems

3 VSH

4 Dakota

2 / 30

Introduction Based on number-theoretic problems VSH Dakota

Generic attacks

For H : {0, 1}∗ → {0, 1}n and h : {0, 1}m → {0, 1}n, m > n

attack rough complexity

collisions
√

2n = 2n/2

2nd preimages 2n

preimage 2n

Goal: generic attacks are best (known) attacks

3 / 30

Introduction Based on number-theoretic problems VSH Dakota

Number-theoretic, difficult problems

Factoring:
given N = pq, find p and q,

where p, q big, (odd) prime numbers, p �= q

Recommended that N ≥ 21024 for high level of security

A 1024-bit N:
1350664108659952233496032162788059699388814756056670
2752448514385152651060485953383394028715057190944179
8207282164471551373680419703964191743046496589274256
2393410208643832021103729587257623585096431105640735
0150818751067659462920556368552947521350085287941637
7328533906109750544334999811150056977236890927563

4 / 30

Introduction Based on number-theoretic problems VSH Dakota

Number-theoretic, difficult problems (2)

Discrete logarithm:

given β = αa mod p, find a,

where p prime, a chosen random from Zp−1, α ∈ Z ∗p
primitive

Recommended that p > 21024 for high level of security

But not all instances of these problems are hard, e.g.,

if p � q, then factoring N = pq is easy

if p − 1 has only small prime factores then finding discrete logs
modulo p is easy

5 / 30

Introduction Based on number-theoretic problems VSH Dakota

Hash based on factoring (Shamir)

N = pq, p �= q, large odd primes, α fixed, large order mod N.

Public: N, α
H : {0, 1}∗ → Z ∗N

H(x) = αx mod N

Collision: H(x) = H(x ′) ⇒ x − x ′ = kφ(N).

With N = pq and φ(N) = (p − 1)(q − 1) easy to find p and q

6 / 30

Introduction Based on number-theoretic problems VSH Dakota

Hash based on discrete log (Pfitzmann, Van Heijst)

Public primes: p, q = p−1
2 , s.t. DLP(p) is hard

Public primitive elements of Zp: α, β (randomly chosen)

h : Zq × Zq → Z ∗p

h(x , y) = αxβy mod p

Find a collision for h ⇒ compute logα(β)

7 / 30

Introduction Based on number-theoretic problems VSH Dakota

Number-theoretic hash functions

most schemes slow, e.g., no real speed-up for use in digital
signature schemes

some schemes have unfortunate algebraic properties
(may interact badly with other public-key algorithms)

open problem to devise efficient “provably” secure hash
function

8 / 30

Introduction Based on number-theoretic problems VSH Dakota

Newer constructions

VSH - Very Smooth Hash

Contini, Lenstra, Steinfeld, 2005

collision ⇒ nontrivial modular square roots of very smooth
numbers modulo N (composite)

efficient collision finder implies fast factoring algorithm

LASH - A Lattice Based Hash Function

Bentahar, Page, Saarinen, Silverman, Smart 2006

based on the problem of finding small vectors in lattices

9 / 30

Introduction Based on number-theoretic problems VSH Dakota

Factoring - Equal squares

Let n = pq, p �= q, odd primes. Let x ∈ Z ∗n

4 square roots of x2 mod n are x ,−x , y ,−y mod n where
x �= ±y mod n

mod n mod p mod q

x z w
−x −z −w

y z −w
−y −z w

gcd(x + y , n) = q, gcd(x − y , n) = p,

Find (random) a, b s.t. a2 = b2 mod n, factor n with prob. 1
2

10 / 30

Introduction Based on number-theoretic problems VSH Dakota

Example. Dixon’s algorithm with n = 4189

√
4189 � 64.7

Use the factor base B = {−1, 2, 3, 5, 7, 11, 13}
x2
j mod n factorisation of x2

j aj

582 mod n −1 · 3 · 52 · 11 (1, 0, 1, 0, 0, 1, 0)
612 mod n −1 · 22 · 32 · 13 (1, 0, 0, 0, 0, 0, 1)
672 mod n 22 · 3 · 52 (0, 0, 1, 0, 0, 0, 0)
692 mod n 22 · 11 · 13 (0, 0, 0, 0, 0, 1, 1)
742 mod n 32 · 11 · 13 (0, 0, 0, 0, 0, 1, 1)

gcd(58 · 61 · 67 · 69 + ((23) · (32) · (52) · 11 · 13), n) = n;

gcd(58 · 61 · 67 · 74 + ((22) · (33) · (52) · 11 · 13), n) = 59;

11 / 30

Introduction Based on number-theoretic problems VSH Dakota

Quadratic and number field sieves

Quadratic sieve, advanced variant of Dixon’s algorithm

Number field sieve(NFS), advanced variant of quadratic sieve

NFS currently best known algorithm for factoring large RSA
moduli

Size of factor base: e(0.96+O(1))(ln n)1/3(ln ln n)2/3

Running time: e(1.923+O(1))(ln n)1/3(ln ln n)2/3

Notation: L[n, α] = e(α+O(1))(ln n)1/3(ln ln n)2/3

12 / 30

Introduction Based on number-theoretic problems VSH Dakota

VSH - iterated hash function

Let N = pq be a public RSA modulus (p �= q, both secret)

Let p1, . . . , pk be public primes such that
∏k

i=1 pi < N

Let m = m1,m2, . . . ,m�k be message, mi ∈ {0, 1}
x0 = 1

x1 = x2
0 (pm1

1 pm2
2 · · · pmk

k) mod N

xj+1 = x2
j

∏k
i=1 p

mjk+i

i mod N

Hash(m) = x�

13 / 30

Introduction Based on number-theoretic problems VSH Dakota

Security of VSH

VSSR Problem. Let n = pq be a public RSA modulus (p, q
secret). Let k ≤ (log n)c . Find x ∈ Z ∗n such

x2 ≡
k∏

i=0

pei
i mod n,

where at least one ei is odd.

VSSR Assumption: The VSSR Problem is hard.

Computational VSSR Assumption:
Solving VSSR for n is as hard as to factor an S-bit modulus, where
S is least positive integer satisfying

L[2S , 1.923] ≥ L[n, 1.923]

k
.

L[n, α] = e(α+O(1))(ln n)1/3(ln ln n)2/3

14 / 30

Introduction Based on number-theoretic problems VSH Dakota

VSH - security, speed

Consider VSH with 1024-bit n, which allows for k = 131

Then assumptions imply

a collision for VSH ⇒ a solution to VSSR

a solution to VSSR as hard as factoring an 840-bit modulus

Implementation:
- 3 modular mult’s per k bits
- speed-up from precomputation

15 / 30

Introduction Based on number-theoretic problems VSH Dakota

VSH - problems (?)

Algebraic properties, e.g., easy to find messages with hash
values h and 2h

Easy to invert hash for messages of small length

VSH has multiplicative property (Saarinen 2006):

H(z)H(a ∨ b) = H(a)H(b) mod n,

for z the all-zero bit string, a ∧ b = z , and |z | = |a| = |b|.
Someone must choose n such that p, q remain secret

16 / 30

Introduction Based on number-theoretic problems VSH Dakota

VSH - defense

Designers of VSH only aim for collision-resistance.

VSH not to be used as replacement for random oracle nor
SHA-1
“random oracles do not exist in the real world, and therefore relying

on them too much is not recommended”

Potential use in schemes which require only
collision-resistance, example, Cramer-Shoup signatures, which
relies on strong RSA assumption and collision-resistant hash
function

One of the best attempts to build hash function on
number-theoretic problem so far..

17 / 30

Introduction Based on number-theoretic problems VSH Dakota

DaKoTa

DaKoTa, a hash function co-designed by

Damg̊ard, Ivan B.

Knudsen, Lars R.

Thomsen, Søren S.

Uses combination of modular arithmetic and symmetric crypto

18 / 30

Introduction Based on number-theoretic problems VSH Dakota

Based on factoring (Goldwasser, Micali, Rivest)

N = pq, p �= q, large primes, a0, a1 random squares modulo N

Public: N, a0, a1

h : {0, 1} × Z ∗N → Z ∗N

h(b, y) = ab y2 mod N

Collision gives x , x ′ such that x2 = x ′2 mod N → factoring

More efficient variants with more squares a0, . . . , ak , Damg̊ard

19 / 30

Introduction Based on number-theoretic problems VSH Dakota

Getting to Dakota

n = pq, p �= q, large primes, p ≡ q ≡ 3 mod 4

Public: n, f

h : {0, 1} × SQ(n) → SQ(n)

f : {0, 1} → SQ(n)

h(b, y) = f (b) y2 mod n

20 / 30

Introduction Based on number-theoretic problems VSH Dakota

Getting closer to Dakota

n = pq, p �= q, large primes, p ≡ q ≡ 3 mod 4

Public: n, f

h : {0, 1}k × SQ(n) → SQ(n)

f : {0, 1}k → SQ(n)

h(x , y) = f (x) y2 mod n

21 / 30

Introduction Based on number-theoretic problems VSH Dakota

Getting even closer to Dakota

n = pq, p �= q, large primes, p ≡ q ≡ 3 mod 4

Public: n, f

h : {0, 1}k × SQ(n) → SQ(n)

f : {0, 1}k → Zn

h(x , y) = f (x)2 y2 mod n

22 / 30

Introduction Based on number-theoretic problems VSH Dakota

Arriving at Dakota

n = pq, p �= q, large primes, p ≡ q ≡ 3 mod 4

Public: n, f

h : {0, 1}k × SQ(n) → SQ(n)

f : {0, 1}k → Zn

h(x , y) = (f (x) y)2 mod n

23 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- an iterated hash function

n = pq, p ≡ q ≡ 3 mod 4, public: n, f

h : {0, 1}k × SQ(n) → SQ(n) f : {0, 1}k → Zn

h(x , y) = (f (x) y)2 mod n

Choose r ∈ Z∗n, let s = r2 mod n

Split padded message x into k-bit words, x1, . . . , xt

Set y0 = s, then compute

yi = h(xi , yi−1) = (f (xi)y)2 mod n

Hash of x is then yt .

24 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- an iterated hash function
h(x , y) = (f (x)y)2 mod n

Assumption

Consider probabilistic polynomial time algorithm with input f , n,
and output x , x̃ , z. Probability is negligible that

x �= x̃ and f (x)/f (x̃) = ±z2 mod n

Theorem

Hash function H is collision intractable under Assumption

find collision with prob ε → break Assumption with prob ε/2.

25 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- Assumption h(x , y) = (f (x)y)2 mod n

Assumption

Consider probabilistic polynomial time algorithm with input f , n,
and output x , x̃ , z. Probability is negligible that

x �= x̃ and f (x)/f (x̃) = ±z2 mod n

f must be one-way: choose z , x̃ , compute x

f must be coll. resistant: find collision for f , let z = 1

no circular argument?, since f does (need to) not compress

26 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- Proposal 1 for f h(x , y) = (f (x)y)2 mod n

f : {0, 1}k → Zn

Let n and n′ be 1025-bit resp. 1024-bit RSA moduli

Let k = 1022

Let u = x2 mod n′, where x < n′/2

Let v = Eκ1(u) = v1 | · · · | v8, where E is CBC encryption
using AES

Let f (x) = Eκ2(v8 | · · · | v1)

f is one-way, collision-resistant
27 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- Proposal 2 for f h(x , y) = (f (x)y)2 mod n

f : {0, 1}k → {0, 1}k

Let n be 1025-bit RSA-modulus, let k = 1024

f (x) = g(x)⊕ x , where g is permutation of 1024 bits

proposal for g :

tranform x into 8× 8 matrix A with 16-bit values

Do 4 times
A← E (A)T ,

where E is AES encryption (fixed key) of every column

28 / 30

Introduction Based on number-theoretic problems VSH Dakota

Dakota- Performance

Hash function Approximate speed (cycles/byte)
32-bit 64-bit

SHA-256 20 20
VSH 840 ?
Dakota (Proposal 1) 385 170
Dakota (Proposal 2) 330 170

29 / 30

Introduction Based on number-theoretic problems VSH Dakota

Concluding remarks

1980s: Hash functions based on block ciphers

1990s:

Dedicated, faster hash functions (Rivest-kickoff)

Many broken block cipher based hash function proposals

2000s:

Many dedicated schemes have been broken in later years

Many new constructions

Renaissance of block cipher based proposals

Renaissance of constructions with proofs of security

SHA-3, likely to become “big SHA-1”, speed issue

30 / 30

