

Block cipher - family of permutations

• $e: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$, $m = \kappa + n > n$

- each κ -bit key specifies bijective mapping on n bits
- must hold for all x and k that $e_k^{-1}(e_k(x)) = x$.
- one-way function: given x and $e_k(x)$, hard to find k.

DES = Data Encryption Standard

DES & AES

AES = Advanced Encryption Standard

system	year	block size	key size
DES	1977	64	56
AES	2001	128	128, 192 or 256

DES: History

- Developed in early 70's by IBM using 17 man years
- Evaluation by National Security Agency (US)
- 1975: publication of proposed standard
- Public discussion (trapdoors, key size)
- 1977: publication of FIPS 46 (DES)
- 2008: most realistic key-recovery attack is exhaustive search

Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

AES - Advanced Encryption Standard

- US governmental encryption standard
- Open (world) competition announced January 97

Block cipher constructions Back to the 70s Single block hash Double block hash

- Keys: choice of 128-bit, 192-bit, and 256-bit keys
- Blocks: 128 bits

Introduction

- October 2000: AES=Rijndael
- Standard: FIPS 197, November 2001

11/36

Fixed-key hash

Results on DES

Introduction

- $\forall p,k: c = \mathrm{DES}_k(p) \Longleftrightarrow \overline{c} = \mathrm{DES}_{\overline{k}}(\overline{p})$
- 4 weak keys: $DES_k(DES_k(p)) = p, \forall p$
- 6 pairs of semi-weak keys: $DES_{k1} = DES_{k2}^{-1}$
- Differential cryptanalysis (1991), 247 chosen plaintexts
- Linear cryptanalysis (1993), 2⁴³ known plaintexts
- Exhaustive search $(2^{56} \simeq 10^{17} \text{ operations})$. DES key found in 22 hours using special hardware and distributed software (1999)

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

AES=Rijndael

- Designed by Joan Daemen and Vincent Rijmen
- Simple design, byte-oriented
- Operations: XOR and table lookup
- S-box based on $g(x) = x^{-1}$ in $GF(2^8)$
- 10, 12 or 14 iterations of the round transformation depending on length of key
- Focus on 128-bit key version with 10 iterations

In the beginning

In the beginning there was ...

Introduction

Diffie and Hellman, 1976. New directions in cryptography.

- Digital signatures for efficiency:
- "Let g be a one-way mapping from binary N-space to binary n-space...". "Take the N bit message m and operate on it with g to obtain the n bit vector m'."

Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

- "It must be hard even given m to find a different inverse image of m'"
- "Finding such functions appears to offer little trouble"

- x₀ fixed block
- 2nd preimages hard if e secure against known-plaintext attack

18 / 36

Davies-Meyer

Preneel-Miyaguchi

MD4-family

- MD4, Rivest 1990
- MD5, Rivest 1991
- SHA-0, 1993
- SHA-1, 1994
- all hash functions of Davies-Meyer form
- "block ciphers" with feed-forward
- hash rates for Davies-Meyer can be (arbitrarily) high

Ideal cipher model

Introduction

Introduction

Block cipher constructions

• Let $B_{n,k}$ be all block ciphers with a k-bit key and n-bit blocks,

 $\{0,1\}^k \times \{0,1\}^n \to \{0,1\}^n$

Back to the 70s Single block hash Double block hash

Fixed-key hash

- There are $2^{n!} \approx 2^{n2^n}$ bijections on *n* bits
- It holds that

 $|B_{n,k}| = \binom{2^n!}{2^k}$

• An ideal cipher is randomly selected from $B_{n,k}$

21 / 36

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

Double block hash - based on block ciphers

- $\blacksquare \text{ Based on } e: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n$
- Length of hash, 2n bits
- Aim: 2^n security level for collisions
 - Merkle, 1989
 - MDC-2, Brachtl, Coppersmith et al 1988/1990
 - PBGV, QG, LOKI-DBH,, 1990s
 - Hirose, Nandi, 2005
 - Shrimpton-Stamm 2007, Rogaway-Steinberger 2008

Merkle's double block schemes with DES (1989)

"DES can be used to build a one-way hash function which is secure"

Block cipher constructions Back to the 70s Single block hash Double block hash

- if DES fails "it seems almost certain that some block cipher exist with the desirable properties"
- 128-bit hash function with proof of security in ideal cipher model
- collisions $\approx 2^{55}$, inconvenient block sizes, low hash rates
- "recent proposal from IBM looks very hopeful", but no proof..

23/36

Fixed-kev hash

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

- Coppersmith, Meyer, Schilling et al, IBM, patent filed 1987
- designed for DES but can be used with any block cipher
- \blacksquare mapping from text to key: $\phi_1(\cdot),\phi_2(\cdot):\{0,1\}^{64}\to \{0,1\}^{56}$
- $\phi_1(x)$, $\phi_2(y)$ never weak DES keys for any x, y
- hash rate 1/(2+2) (1/4 for DES and AES)
- MDC-4: variant using four encryptions per block

MCD-2 used with DES and AES

Block cipher constructions Back to the 70s Single block hash

(Best known attacks)

Introduction

	DES	AES
Preimage attack	2 ⁸³	2 ¹⁹²
2nd preimage attack	2 ⁸³	2 ¹⁹²
Collision attack	2 ⁵⁵	2 ¹²⁸
Hash rate	1/4	1/4

Double block hash

Fixed-kev hash

For use with AES, "proof" that collision requires > 2⁷⁵ operations (Steinberger 2007)

27 / 36

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

Abreast-DM & Tandem-DM - Lai, Massey 1990

• $e: \{0,1\}^{\kappa} \times \{0,1\}^n \to \{0,1\}^n, \ \kappa > n$ $f(x,y) = e_x(y) \oplus y$

• Abreast-DM $\begin{cases} h_i^1 = f(h_{i-1}^2 \parallel m_i, h_{i-1}^1) \\ h_i^2 = f(m_i \parallel h_{i-1}^1, \overline{h}_{i-1}^2) \end{cases}$

- Tandem-DM $\begin{cases} h_i^1 = f(h_{i-1}^2 \parallel m_i, h_{i-1}^1) \\ h_i^2 = f(m_i \parallel (h_i^1 \oplus h_{i-1}^1), h_{i-1}^2) \end{cases}$
- IDEA, (64-bit block, 128-bit key), hash rate 1/4, conjectured security level for collisions 2⁶⁴
- AES-256, (128-bit block, 256-bit key), hash rate 1/4, conjectured security level for collisions 2¹²⁸

Back to the 70s Single block hash Double block hash

IntroductionBack to the 70Single block hashDouble block hashFixed-key hash**Hirose's double block mode 2006**Based on work by Nandi, 2005
 $e: \{0,1\}^{\kappa} \times \{0,1\}^n \rightarrow \{0,1\}^n, \kappa > n, c$ nonzero constant $h_i^1 = e_{h_{i-1}^2|m_i}(h_{i-1}^1) \oplus h_{i-1}^1$
 $h_i^2 = e_{h_{i-1}^2|m_i}(h_{i-1}^1 \oplus c) \oplus h_{i-1}^1 \oplus c$ • Collision requires 2^n operations assuming $e(\cdot, \cdot)$ is ideal cipher• AES-256, hash rate 1/3, security level 2^{128} for collisions

Block cipher constructions Back to the 70s Single block hash Double block hash

31/36

Fixed-key hash

Knudsen-Preneel, more examples

Better rates using codes over larger fields

Block cipher constructions

Introduction

GF(2 ²)		GF(2 ⁴)		Collision
Code	Rate	Code	Rate	
[5, 3, 3] [8, 5, 3] [12, 9, 3]	$\frac{1/(5+5)}{2/(8+8)}$ 6/(12+12)	[6, 4, 3] [8, 6, 3] [12, 10, 3]	2/(6+6) 4/(8+8) 8/(12+12)	$ \begin{array}{c} \simeq 2^n \\ \simeq 2^n \\ \simeq 2^n \end{array} $

AES-128, rate 1/3, conjectured security level for collisions 2^{128}

Hirose's double block mode, figure

29/36

Introduction

Fixed-key hash

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

Ideal cipher model ?

- proofs in model give protection against generic attacks
- no real-life cipher is an ideal cipher; "nearly ideal" cipher can be strong for encryption but very weak when used for hashing
- attacker in control of key can invest time in finding key(s) with certain properties

Hash based on fixed bijections

Preneel, 1992

Introduction

- Knudsen, 2005: SMASH
- Black et al, 2005: Collision-resistant iterated hash functions based on one bijective mapping do not exist in information-theoretic setting

Block cipher constructions Back to the 70s Single block hash Double block hash

- Shrimpton-Stamm, 2007, construction with three bijections, rate 1/3
- Rogaway-Steinberger, 2008
 - at least three bijections necessary and sufficient
 - at least five bijections needed in double-block hash mode

33 / 36

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

Known-key distinguishers - Knudsen-Rijmen 2007

- Block cipher cryptanalysis with applications to hash functions
- With a given (random) key, produce set of texts with "non-random" behaviour
- Most short-cut attacks on block ciphers exploit statistical properties of plain- and ciphertexts in (reduced) cipher
- If such properties cannot be found given the key, it seems unlikely that they can be found when **not** given the key

Introduction Block cipher constructions Back to the 70s Single block hash Double block hash Fixed-key hash

Concluding remarks

- Renaissance of block cipher based proposal?
- \blacksquare Seems like we can get good hashing with speed 1/3 of AES ?
- Block cipher based proposals likely not to be selected for SHA-3 ?!

35 / 36

Fixed-kev hash