

Introduction	Iterated hash functions	MD4-family	SHA-3
1 Introdu	ction		
2 Iterated	hash functions		
3 MD4-fa	mily		
4 SHA-3			
			2 / 19

For $H : \{0,1\}^* \rightarrow \{0,1\}^n$ and $h : \{0,1\}^m \rightarrow \{0,1\}^n$, $m > n$ $\begin{array}{c} attack rough \ complexities \\ collisions \sqrt{2^n} = 2^{n/2} \\ 2nd \ preimages k2^{n/2} + 2^{n-k} \ with \ 2^k \ blocks \\ preimage \qquad 2^n \end{array}$ Goal: generic attacks are best (known) attacks	troduction	Iterated hash f	unctions	MD4-family	SHA-3
attackrough complexitiescollisions $\sqrt{2^n} = 2^{n/2}$ 2nd preimages $k2^{n/2} + 2^{n-k}$ with 2^k blockspreimage 2^n	Generic at	tacks			
attackrough complexitiescollisions $\sqrt{2^n} = 2^{n/2}$ 2nd preimages $k2^{n/2} + 2^{n-k}$ with 2^k blockspreimage 2^n					
collisions $\sqrt{2^n} = 2^{n/2}$ 2nd preimages $k2^{n/2} + 2^{n-k}$ with 2^k blocks preimage 2^n	For <i>H</i> : {	$\{0,1\}^* \rightarrow \{0,1\}^n$	and $h: \{0,1\}^m$ –	$\rightarrow \{0,1\}^n, m$	> <i>n</i>
2nd preimages $k2^{n/2} + 2^{n-k}$ with 2^k blocks preimage 2^n		attack	rough complexitie	es	
Goal: generic attacks are best (known) attacks		2nd preimages	$k2^{n/2} + 2^{n-k}$ wit	h 2 ^k blocks	
	Goal: ge	neric attacks are l	oest (known) attac	ks	
	Godi. gei				
5 / 19					

IntroductionMD4 familySHA-9MD4-familyImage: strain of the strain of

IntroductionMD4-familySHA-3MD4-family - RIPEMDS• RIPEMDs, MD4-variants by Bosselaers, Dobbertin, Preneel• 1992: RIPEMD (128 bits)• 1995: RIPEMD-128, RIPEMD-160

7	/	19

Hash functions in real-life

Iterated hash functions

Scheme	Bits in hash code	Compression fct. bits in \rightarrow bits out	Designer	Year
MD4	128	512+128 ightarrow 128	Rivest	1990
MD5	128	$512+128 \rightarrow 128$	Rivest	1991
RIPEMD-128	128	$512+128 \rightarrow 128$	BDP	1992
SHA-1	160	$512+160 \rightarrow 160$	US Gov.	1995
RIPEMD-160	160	$512+160 \rightarrow 160$	BDP	1995
SHA-256	256	$512+256 \rightarrow 256$	US Gov.	2002
SHA-512	512	$1024+512\rightarrow512$	US Gov.	2002

MD4-family

MD: Message Digest

SHA: Secure Hash Algorithm

MD4-family

SHA-3

From MD4 over MD5 to SHA

- Iterated hash functions
- Compression functions process message blocks of 512 bits
- Message blocks processed in words of 32 bits
- Message expanded from 512 to 32 × r bits, where r is number of steps of algorithm

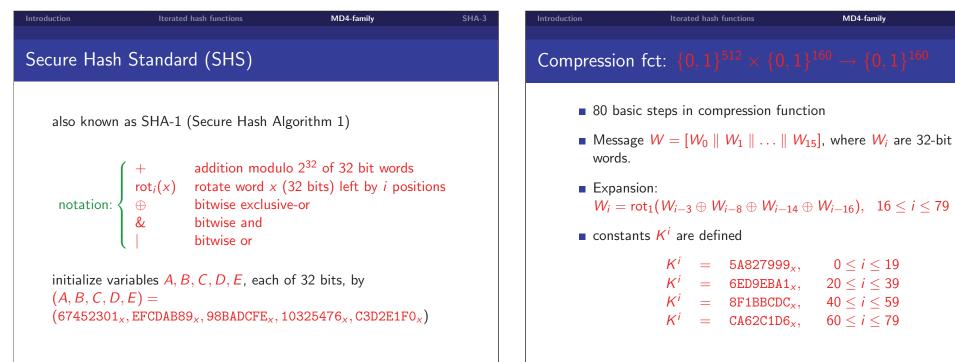
Algorithm	Steps	# registers of 32 bits
MD4	48	4
MD5	64	4
SHA-1	80	5

Hashing with SHA-1

Introduction

pad message, s.t. last block is 512-64 bits
 append 64-bit block containing length of original message
 for each message block *M* of 512 bits:

 compute t = h(*M*, (A, B, C, D, E)) = t₀, ..., t₄
 set A = t₀, B = t₁, C = t₂, D = t₃, and E = t₄


 output the hash value [t₀ || t₁ || t₂ || t₃ || t₄].
 for compression function h : {0, 1}⁵¹² × {0, 1}¹⁶⁰ → {0, 1}¹⁶⁰

MD4-family

Iterated hash functions

11/19

SHA-3

9/19

10 / 19

12/19

ntroduction	Iterated hash functions	MD4-family	SHA-3	Introduction	Iterated hash functions	MD4-family	Sł
Compression	function (continued)			SHA-3			
A ⁱ⁺ B ⁱ⁺ C ⁱ⁺ D ⁱ⁺	$= B, C^{0} = C, D^{0} = D, E^{0} = C^{1}$ $= W_{i} + \operatorname{rot}_{5}(A^{i}) + f^{i}(E^{1})$ $= A^{i}$ $= \operatorname{rot}_{30}(B^{i})$ $= C^{i}$ $= D^{i} \text{for } i = 0$	$B^i, C^i, D^i) + E^i + K^i$					
$f^i = f_m$	$F = (X \& Y) (\neg X \& Z),$ $F = X \oplus Y \oplus Z,$ F = (X & Y) (X & Z) (Y &	& <i>Z</i>), $40 \le i \le 59$.					1

■ 1996: MD4 broken, Dobbertin

Iterated hash functions

- 2004: MD5 broken, Wang
- 2004: SHA-0 broken, Joux et al
- 2004: RIPEMD broken, Wang
- 2005, claim: collisions for SHA-1 in time $\approx 2^{69}$ (Wang)

MD4-family

- \blacksquare 2006, claim: collisions for SHA-1 in time $\approx 2^{63}$ (Wang)
- 2007, claim: collisions for SHA-1 in time $\approx 2^{60}$ (Mendel, Rechberger, Rijmen)
- 2007: http://boinc.iaik.tugraz.at/

SHA-3 - Call for candidates

- announcement: October 29, 2007
- must provide digests of 224, 256, 384, and 512 bits, not 160.
- available worldwide royalty-free, no IPR

Iterated hash functions

- capable of protecting sensitive information for decades
- should be suitable for
 - digital signatures, FIPS 186-2
 - HMAC, FIPS 198
 - key establishment, SP 800-56A
 - random number generation, SP 800-90
- security strength at least that of the SHA-2s with significantly improved efficiency

SHA-3

15 / 19

SHA-3

Introduction

Iterated hash functions

MD4-family

SHA-3

SHA-3 - Desirable properties

- efficient integral options, e.g., randomized hashing, that "fundamentally improve security"
- parallelizable
- avoid "generic properties" of Damgård/Merkle constructions
- \blacksquare attack on SHA-2 should not lead to attack on SHA-3
- flexible for a wide variety of implementations
- a single family, except if good arguments for more families
- tunable security parameter, e.g., number of rounds, with recommendations

SHA-3 - Timeline

Introduction

■ hard submission deadline: 31/10-2008

Iterated hash functions

■ submissions by 31/8-2008 checked by NIST for inconsistencies

MD4-family

- Round 1: 12 months. Workshop 1. Workshop 2. No modifications during Round 1.
- Round 2: ≈ 5 candidates selected. 12-15 months. Tweaks allowed. Workshop 3.
- AHS(s).
- documentation and testing like AES
- review is public

19/19

IntroductionMD4-familySHA3SHA-3 - SecurityMessage digest of n bitsa Collisions should take 2n/2b Preimages should take 2n/2b Preimages should take 2nc 2nd preimages should take 2n-k for messages shorter than 2k bitsHigher levels of security against 2nd preimage will be viewed positivelyb NIST open to other designs than Damgård/Merkle

18 / 19

17 / 19

SHA-3