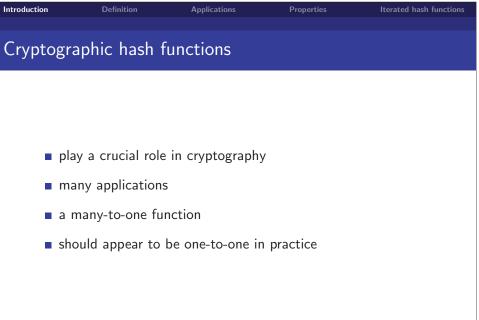
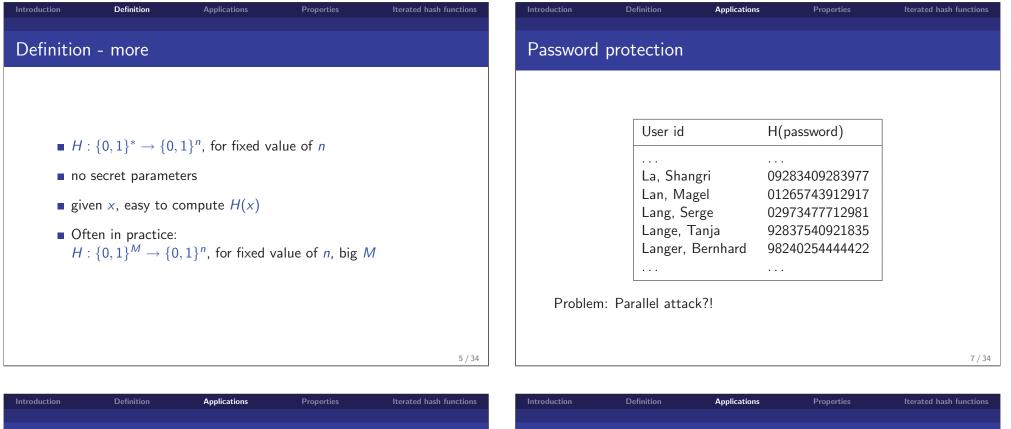


Introduction	Definition	Applications	Properties	Iterated hash functions
1	Introduction			
2	Definition			
3	Applications			
4	Properties			
5	Iterated hash function	IS		





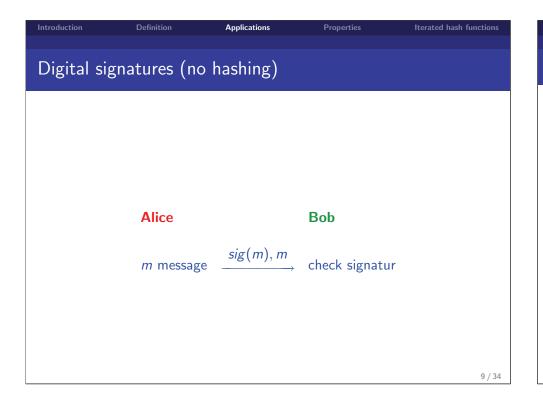
Hash Function Applications

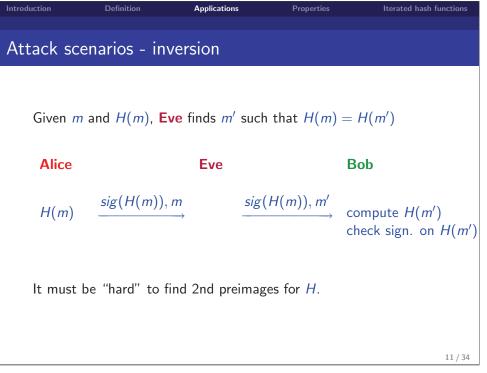
- Digital signatures
- Password protection, Unix
- Message authentication codes, HMAC
- As random oracle in various protocols, RSA-OAEP, RSA-PSS, PKCS #1, v2.1
- Pseudo-random generator (key-derivation), DSS
- • •

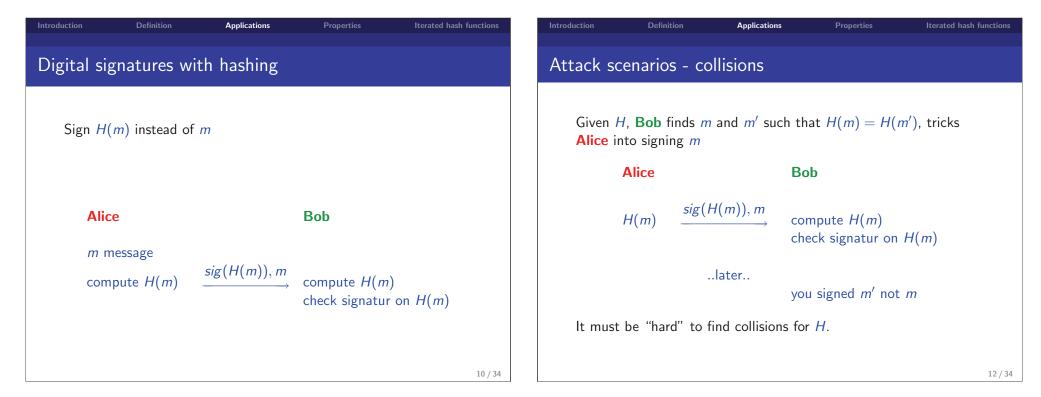
Passwo	Password protection, cont.				
	User id	Salt	H(password, salt)		
	La, Shangri	68678927431	09283409283977		
	Lan, Magel	0000000001	01265743912917		
	Lang, Serge	23092839482	02973477712981		
	Lange, Tanja	30092341218	92837540921835		
	Langer, Bernhard	86769872349	98240254444422		

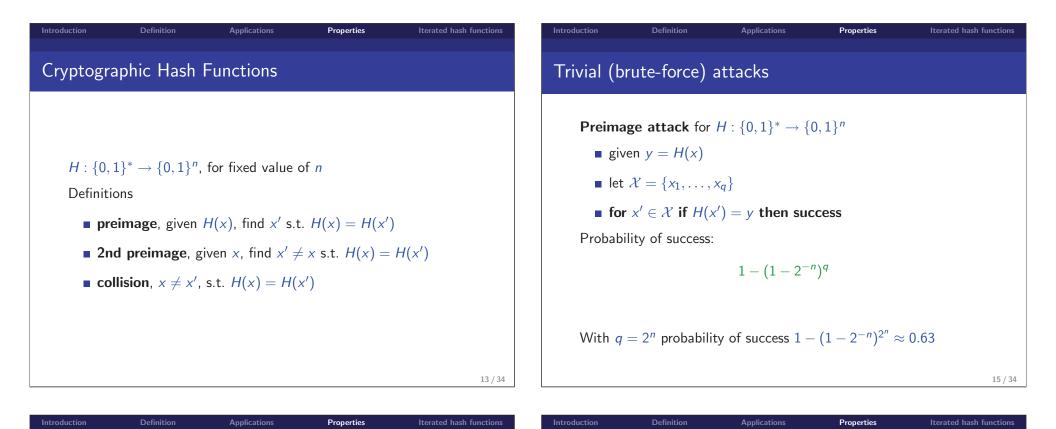
It should be "hard" to find preimage of H

6 / 34









Random Oracle Model

Let $H : \{0,1\}^* \to \{0,1\}^n$ be a hash function. Random Oracle Model:

• the values H(x) are "random", that is, for any x and $y \in \{0, 1\}^n$

$$\Pr(H(x) = y) = 2^{-n}$$

• let $\mathcal{X} = \{x_1, \dots, x_t\}$, if $H(x_1), H(x_2), \dots, H(x_t)$ known by attacker, then for any $x \notin \mathcal{X}$ and $y \in \{0, 1\}^n$

$$\Pr(H(x) = y) = 2^{-n}$$

Trivial (brute-force) attacks

п	$(1-2^{-n})^{2^n}$
5	0.6379
10	0.6323
15	0.6321
20	0.6321

q	$1 - (1 - 2^{-n})^q$
2^{n-1}	0.3935
2 ⁿ	0.6321
2 ^{<i>n</i>+1}	0.8647
2 ^{<i>n</i>+2}	0.9817

Trivial (brute-force) attacks

Definition

Introduction

2nd preimage attack for $H: \{0,1\}^* \rightarrow \{0,1\}^n$

Applications

Properties

Properties

- given x and y = H(x)
- let $\mathcal{X} = \{x_1, \dots, x_q\}$, s.t., $x \notin \mathcal{X}$
- for $x' \in \mathcal{X}$ if H(x') = y then success

Probability of success:

$$1-(1-2^{-n})^{q}$$

With
$$q = 2^n$$
 probability of success $1 - (1 - 2^{-n})^{2^n} \approx 0.63$

Birthday paradox

Introduction

Iterated hash functions

Choose q elements at random (with replacements) from set of S random elements, where $q \ll S$ Let p be probability of at least one collision

Applications

Properties

Iterated hash functions

$$1 - p = 1 \cdot \frac{S - 1}{S} \cdot \frac{S - 2}{S} \cdots \frac{S - (q - 1)}{S}$$
$$= \prod_{k=1}^{q-1} \left(1 - \frac{k}{S} \right)$$
$$\approx \prod_{k=1}^{q-1} \exp(-\frac{k}{S}) = \exp\left(-\frac{q(q - 1)}{2S}\right)$$
NB. $e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} - \dots$

Introduction	Definition	Applications	Properties	Iterated hash functions
Birthday	paradox (2)			
	$p \approx 1$	$-\exp\left(-\frac{q(q-1)}{2s}\right)$	- 1)	
	p	25	5)	
		× ×	,	
	a	×	≈ n	
	q 1 17	 	$\approx p$	
	q 1.17 1.41		≈ <i>p</i> 50% 63%	
	1.17	\sqrt{S}	50%	

collision attack for $H : \{0, 1\}^* \rightarrow \{0, 1\}^n$

• let $\mathcal{X} = \{x_1, \ldots, x_q\}$,

Trivial (brute-force) attacks

- let $\mathcal{Y} = \{y_1, \dots, y_q\}$, where $y_i = H(x_i)$
- if $y_i = y_j$ for some $i \neq j$ then success

Probability of success:

 $1-e^{rac{q(q-1)}{2\cdot 2^n}}$

With $q = \sqrt{2} \cdot 2^{n/2}$ one gets probability of success of $1 - e^{-1} \approx 0.63$

17/34

Iterated hash functio

IntroductionDefinitionApplicationsPropertiesIterated hash functionsBirthday paradox used on hash functionsHash function $H : \{0,1\}^* \rightarrow \{0,1\}^n$ I choose $q = 2^{(n+1)/2} = \sqrt{2} \cdot 2^{n/2}$ randomly chosen inputs
each of at least (n+1)/2 bits

- **2** compute hash values for all k inputs
- Prob(at least one collision) =

$$p pprox 1 - \exp\left(-rac{q(q-1)}{2 \cdot 2^n}
ight) pprox 1 - e^{-1} \simeq 0.63$$

Reductions

 $H: \{0,1\}^* \rightarrow \{0,1\}^n$, for fixed value of n

In random oracle model:

Definition

• 2nd preimage attack for $H \Rightarrow$ collision attack for H

Applications

Properties

• preimage attack for $H \Rightarrow$ collision attack for H

This lead to

• collisions hard \Rightarrow 2nd preimages and preimages hard

23 / 34

Iterated hash functions

Cryptographic hash functions - generic attacks

Applications

Properties

$H: \{0,1\}^* \rightarrow$	$(0,1)^n$,	fixed value o	f
----------------------------	-------------	---------------	---

attack	rough complexity		
collision	$\sqrt{2^{n}} = 2^{n/2}$		
2nd preimage	2 ⁿ		
preimage	2 ⁿ		

Today: $n \ge 160$ is recommended

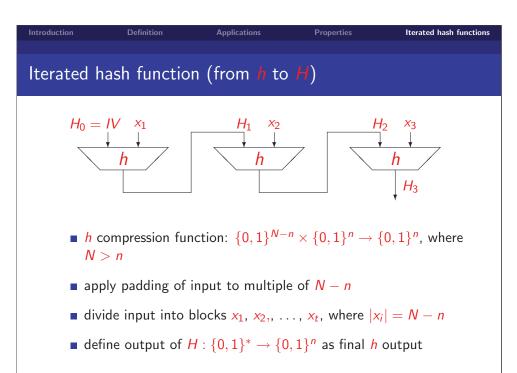
Aim: no better attacks than generic attacks

Introduction Definition Applications Properties Iterated hash functions Iterated hash functionsLet $h : \{0,1\}^N \rightarrow \{0,1\}^n$, N > n, compression function
Construct $H : \{0,1\}^M \rightarrow \{0,1\}^n$,
where M >> N, such that collision for H implies collision for h

22 / 34

21/34

Iterated hash functions



25 / 34

26 / 34

Iterated hash functions

Properties of iterated hash functions

Definition

Introduction

Compression function $h: \{0,1\}^N \to \{0,1\}^n$

Given 2^k hashed messages, effort to find 2nd preimage of ≥ 1 of them is 2^{n-k} (Merkle)

Properties

Applications

■ Given hashed messages with 2^k message blocks, effort to find 2nd preimage is ≃ k2^{n/2} + 2^{n-k} (Dean, Kelsey-Schneier)

attack	rough complexity
collision 2nd preimage preimage	

27/34

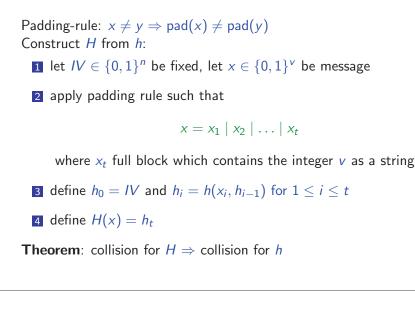
Iterated hash functions

Iterated hash function

Extending hash functions - Merkle-Damgård

Applications

Definition



The extension attack for iterated hash functions

Applications

- Let pad(x) and pad(x') be result of padding strings x and x'.
- Assume pad(x) and pad(x') of same lengths and that

$$H(x) = H(x')$$

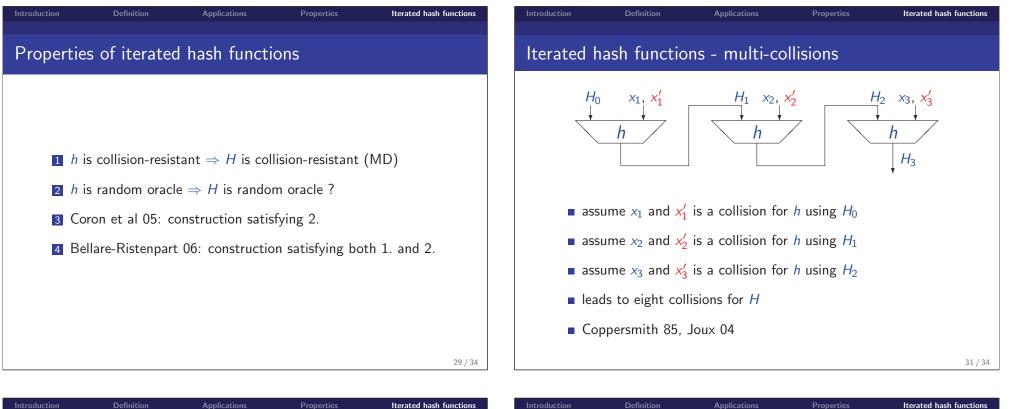
Let y be non-empty string and let

$$z = pad(x) \mid y$$
 and $z' = pad(x') \mid y$,

where '|' denotes concatenation of strings.

Then

H(z) = H(z')



How to beat collision resistance

- Make output of hash function sufficiently large (s.t. 2^{n/2} is huge)
- Family of (strong) hash functions. Choose member of family at random, then hash.
- How not to do it.
 Assume 2^{n/2} operations are in range of attacker. Define hash as

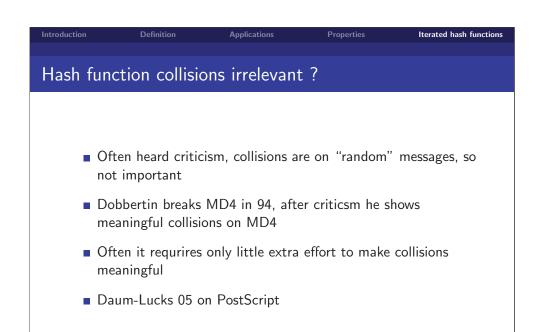
 $F(m) = G(m) \mid H(m),$

where

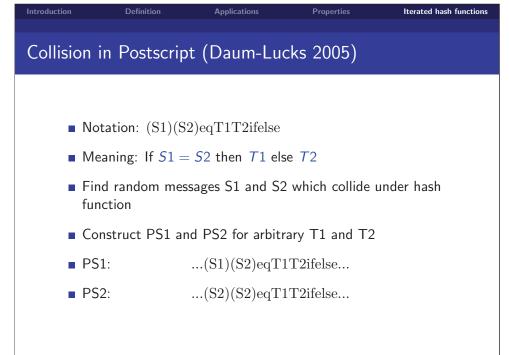
- *G* hash function of *n* bits
- *H* iterated hash function of *n* bits

Introduction	Definition	Applications	Properties	Iterated hash functions
Concatena	ated hash f	unction - col	lision	
	$m) = G(m) \mid F$ G hash functi			
	<i>H</i> iterated has	sh function of <i>n</i> b	its	
■ Fin	d $2^{n/2}$ -collision	n on <i>H</i> in multi-o	collision attack.	
One	e of these give	s collision also fo	or $G \Rightarrow$	
Col	lision for <i>F</i> wi	th effort $(n/2)2^{r}$	n/2	

30 / 34



33 / 34



34 / 34