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How to model trust relationships?

• Probabilities: p(A:C) = p(A:B)p(B:C)

• Min: T(A:C) = Min[ T(A:B), T(B:C) ]

• Max: T(A:C) = Max[ T(A:B), T(B:C) ]

• Average: T(A:C) = ( T(A:B) + T(B:C) )/2

• What is needed is a formalism that can express 
and compute with uncertainty, i.e. “I don’t know”

• The answer is: Subjective Logic

Alice Bob Claire
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Tutorial overview

• Semantic and formal representations of 
subjective opinions, 

• The most important operators of subjective logic,

• Applications of subjective logic in the areas of:

– Information fusion;

– Trust reasoning

– Intelligence analysis
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Objective World v. Subjective World 
(assumed) (perceived)

Assumed 

real world
Subjective

perceived world

≠
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Characteristics and Formalisms

Perceived world

• Characteristics:

– Vague, fuzzy, uncertain

• Formalisms:

– Subjective probabilities

– Multi-valued logics

– Fuzzy logic

– Probabilistic logics

– Subjective logic

Assumed world

• Characteristics:

– Crisp, frequentist, quantum

• Formalisms:

– Binary logic

– Frequentist probabilites

– Quantum logic
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• Probabilistic Logic
–Proposition structures 

–Degrees of truth 

(probability values)

Probabilistic and Subjective Logics
• Binary Logic

– Expresses structures  

of propositions and 

argument models

• Probability Calculus

– Expresses degrees of 

truth of propositions

• Uncertainty

– Expresses uncertainty 

about probability values

• Subjective logic

– Proposition structures

– Degrees of truth

– Explicit uncertainty
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Probabilistic Logic Examples

Binary Logic Probabilistic logic

AND:      xy p(xy) = p(x)p(y)

OR:        xy p(xy) = p(x) + p(y)  p(x)p(y)

MP: { xy,  x }    y

MT: { xy, y }    x

)|()()|()(

)|()(
)|(

xypxaxypxa

xypxa
yxp




)|()()|()(

)|()(
)|(

xypxaxypxa

xypxa
yxp




)|()()|()()( xypxpxypxpyp 

)|()()|()()( yxpypyxpypxp 

a: base rate
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Probability and Uncertainty

Frequentist:

• Relative frequency of “6” 
when throwing this dice is 1/6

• Certain when based on much 
evidence

• Uncertain when based on 
little evidence

Subjective: 

• Probability of end of the 
world within 100Y is 0.5

• Certain when structure of 
system is known

• Uncertain when structure 
of system is unknown
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A Frame and its Reduce Powerset

• A frame X is a state space of distinct possibilities

• The powerset P (X) = 2X , the set of subsets of X

• The reduced powerset R (X) = P (X) \ {X, }

• R (X) = { x1, x2, x3, {x1, x2}, {x1, x3}, {x2, x3} }

• Cardinality  |X| (= 3 in this example)

• Cardinality  |R (X)| = 2|X|  2  (= 6 in this example)

x1 x2 x3

X
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Binomial  Opinion

Binary frame X

Focal element  x 

Multinomial Opinion

n-ary frame X

Focal elements x ∈ X

Hyper Opinion

n-ary frame X
Focal elements x ∈ R (X)

Uncertain

u>0

Corre-

sponds

to:

UB Opinion.

Beta PDF

UM Opinion.

Dirichlet PDF over X

UH Opinion.
Dirichlet PDF over R (X)

Dogmatic

u=0

Corre-

sponds

to:

DB Opinion.

Probability of x

DM Opinion.

Proba. distr. over X

DH Opinion.
Proba. distr. over R (X)

Opinion Classes

F IG  1 : B e ta  fu n ct ion  a fte r 7  p os it ive  an d  1  n eg a tive  resu lts  

x

x1 x2

x3

x1 x2
x3

{x1, x2} {x1, x3} {x2, x3}
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Binomial subjective opinions

• Belief masses on binary frames

– is observer A’s belief in x

– is observer A’s disbelief in x

– is observer A’s uncertainty about x

– is the base rate of x

)( xbb
A

x


),,,(
A

x

A

x

A

x

A

x

A

x
audb

x xBinary frame

)( xbd
A

x


)( Xbu
A

x


A

x
a

X

base rate of x

1
A

x

A

x

A

x
udb

Binomial opinion
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Opinion triangle

),,,(
xxxxx

audb

Example  x =(0.2, 0.5, 0.3, 0.6),  E(x) = 0.38

• Ordered quadruple:

– bx : belief

– dx : disbelief

– ux : uncertainty

– ax : base rate

•

• Probability expectation value: 

1
xxx

udb

xxxx
uab )(E 

Base rate

Opinion 
X

Ex ax

bx  axis

Expectation value

Projector

Director

ux  axis

dx  axis
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What are base rates?

• In probability and statistics, base rate refers to 
category probability unconditioned on evidence, 
often  referred to as prior probabilities. 

• For example, if it were the case that 1% of the 
public are "medical professionals" and 99% of 
the public are not "medical professionals“, then 
the base rates in this case are 1% and 99%, 
respectively.

• E.g. when picking a random person, the prior 
probability of being a medical professional is 1%
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Opinion types

Dogmatic opinion: ux=0 . 

Equivalent to probabilities.

General uncertain opinion: ux0 .

Absolute opinion: bx=1 . 

Equivalent to TRUE.

Vacuous opinion: ux=1 . 

Equivalent to UNDEFINED.
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Binomial opinions as Beta PDF

r: # observations of x

s: # observations of 

a: base rate of x

W = 2: non-informative 

prior weight

F IG  1 : B e ta  fu n ct ion  a fte r 7  p os it ive  an d  1  n eg a tive  resu lts  

x

11
)1(

)()(

)(
),|(Beta














 ppp

 = r + Wa

 = s + W(1-a)

Example:  r = 7,     s = 1,     a = 0.5 (default),        E(p) = 0.8
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Binomial Opinion  Beta PDF 

• (r,s,a) represents Beta PDF parameters.

• (b,d,u,a) represents binomial opinion.

• Op  Beta:

• Beta  Op:















1

/

/

udb

uWds

uWbr

F IG  1 : B e ta  fu n ct ion  a fte r 7  p os it ive  an d  1  n eg a tive  resu lts  

F IG  1 : B e ta  fu n ct ion  a fte r 7  p os it ive  an d  1  n eg a tive  resu lts  





















Wsr

W

Wsr

s

Wsr

r

u

d

b

W = 2
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Online demo

http://folk.uio.no/josang/sl/

http://en.wikipedia.org/wiki/File:Subjective-opinion.jpg
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Fuzzy verbal categories

Likelihood Categories:
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Certainty Categories: 9 8 7 6 5 4 3 2 1

Completely uncertain E 9E 8E 7E 6E 5E 4E 3E 2E 1E

Very uncertain D 9D 8D 7D 6D 5D 4D 3D 2D 1D

Uncertain C 9C 8C 7C 6C 5C 4C 3C 2C 1C

Slightly uncertain B 9B 8B 7B 6B 5B 4B 3B 2B 1B

Completely certain A 9A 8A 7A 6A 5A 4A 3A 2A 1A
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Soliciting opinions from people

• People find it difficult to express opinions as 
numerical values

• Fuzzy verbal categories are intuitively easier

• Opinions have 2-dimensional fuzzy categories

– Likelihood dimension

– Certainty dimension

• Suitable categories depend on application

– Example shows 9 likelihoods and 5 certainties

– 1A corresponds to TRUE

– 9A corresponds to FALSE

– High uncertainty most natural around medium likelihood
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Fuzzy category to opinion mapping

• Depends on base rate

• Mapped to centre of corresponding field

base rate a = 1/3 base rate a = 2/3
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Mapping categories to opinions

• Overlay category matrix with opinion triangle

• Matrix skewed as a function of base rate

• Not all categories map to opinions

– For a low base rate, it is impossible to describe an 

event as highly likely and uncertain, but possible to 

describe it as highly unlikely and uncertain.

– E.g. with regard to tuberculosis which has a low base 

rate, it would be wrong to say that a patient is likely to 

be infected, with high uncertainty. Similarly it would 

be possible to say that the patient is probably not 

infected, with high uncertainty
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From binary to multi dimensional frames

• Binary frames can specify a single proposition 
and its complement.

• Common to have situations with multiple 
mutually exclusive states

• Opinions can be defined over multi-dimensional 
frames → multinomial opinions

• Subjective logic operators can be defined for 
multinomial opinions 
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n-ary frame of discernment

• Generalisation of binary state space

• Set of exclusive and exhaustive singletons.

• Example Frame: X={x1, x2, x3, x4}, |X|=4.

• |R (X)| = 2|X|  2 = 14.

x1 x2 x4x3

X
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Multinomial Opinions

• Frame: X={x1…xk}

• Uncertainty mass: u

• Belief vector: , u + b(xi) = 1

• Base rates: , a(xi) = 1

• Multinomial opinion:

• Expectation:

}1|)({: kixbb
i


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

}1|)({: kixaa
i





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
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iii
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
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Opinion tetrahedron (ternary frame)

bx1 - axis

bx2 - axis

bx3 - axis

uX - axis

Opinion 

X
a


Expectation value vector 
point

Base rate vector 
point

X

X
E


Projector
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Multinomial opinion as point in a simplex 

• The triangle and tetrahedron are the 2D and 3D 
instances of the simplex geometrical shape

• Multinomial opinions can in general be 
represented as a point inside a simplex.

• The equation bi + u =  1 represents a 
barycentric coordinate system.

b1 axis

u axis

b2 axis

b2

b1

u
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Trinomial opinion as Dirichlet PDF

Example:
– 6 red balls 

– 1 yellow ball

– 1 black ball

 












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




k

i
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i

i

k

i

i
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xp

x

x

p

1

1

1
1)(

)(

)(

)(

)|(Dir









r (xi) : # observations of xi

a (xi) : base rate of xi

W = 2: non-informative 

prior weight

(xi) = r(xi) + Wa(xi)

 p(xi) = 1
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Multinomial Opinion  Dirichlet PDF 

• represents Dirichlet PDF parameters.

• represents multinomial opinion.

• Op  Dir:

• Dir  Op:


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
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Non-informative prior weight: W

• Value normally set to W = 2.

• When W is equal to the frame cardinality, then 
the prior Dirichlet PDF is a uniform.

• Beta PDF is a binomial Dirichlet PDF

• Normally required that the prior Beta is uniform, 
which  dictates W = 2

• Specifying uniform prior Dirichlet PDF for large 
frames would make the Dirichlet PDF insensitive 
to new observations.
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Example: ternary state space

• Additivity requires: p(t1) + p(t2) + p(t3) = 1

Example: 

Urn with balls of 3 
different colours

– t1 = 1 = Red

– t2 = 2 = Yellow

– t3 = 3 = Black
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Prior ternary Dirichlet PDF,  W = 2

Example: 

Urn with balls of 3 
different colours. 
Ternary a priori
probability density.

– t1: Red

– t2: Yellow

– t3: Black
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Example posterior ternary Dirichlet PDF 

with W = 2

A posteriori
probability density 
after picking:

– 6 red balls (t1)

– 1 yellow ball (t2)

– 1 black ball (t3)
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Example posterior ternary Dirichlet PDF 

with W = 2

A posteriori
probability density 
after picking:
– 20 red balls (t1)

– 20 yellow balls (t2)

– 20 black balls (t3)
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Example posterior ternary Dirichlet PDF 

with W = 2

A posteriori
probability density 
after picking:
– 20 red balls (t1)

– 20 yellow balls (t2)

– 50 black balls (t3)
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Hyper Opinions

• Frame: X={x1…xk}

• Reduced powerset: R (X) = P (X) \ {X, }

• Uncertainty mass: u

• Belief vector: , xiR (X)

• Base rates: , a(xi) = 1

• Hyper opinion:

• Expectation:
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i
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Hyper Dirichlet PDF
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Opinions v. Fuzzy membership functions

Fuzzy concept Crisp concept

Tall

Average

Short

0 cm

50 cm

100 cm

150 cm

200 cm

250 cm

Friendly 

aircraft

Enemy 

aircraft

Something 

else

Fuzzy 

membership 

functions

Subjective 

opinions 
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Opinions

• Crisp frame

• States mutually exclusive

• Opinion measures 
express uncertainty and 
are therefore fuzzy

Fuzzy memb. Func.

• Fuzzy categories

• Categories are partly 
overlapping

• Measures are crisp, e.g. 
height of a person can be 
measured in centimetres 
and millimetres

Opinions v. Fuzzy membership functions

Possible to combine opinions representation and fuzzy 

membership functions



40

NISNet Finse 2011

Subjective Logic Operators



41

NISNet Finse 2011

Operator notation

• Possible attributes of opinions:
– Who: the belief owner (superscript)

– What: the proposition (subscript)

– Where: the frame (normally omitted)

Subjects

Propositions Frames

Subjective logic    

operator

Argument opinions

Derived 

opinion

Subject combination

Propositional logic Frame composition

B

Yy

A

Xx

BAf

YXfyxf 
 

),(

),(),(

SC

FCPL
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Operator generalisation

• Subjective logic is a generalisation of binary 
logic and probability calculus.

– Probability calculus i.c.o. dogmatic opinions

– Binary logic i.c.o. absolute opinions

• Includes uncertainty.

• Includes belief ownership

• Operator types:

– Classic operators, e.g. multiplication (AND) and 
deduction (MODUS PONENS) 

– Special operators: e.g. trust transitivity and consensus
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Operator principles

• When corresponding probability operator exists, 
the expectation value of the result is always 
equal to the result of the probability operator 
applied to the expectation values of the input 
arguments. 

– e.g.  E(x ·y) = E(x)· E(y) for multiplication

• Similarly for corresponding binary logic 
operators

– e.g. Let V(x) denote TRUE/FALSE valuation of 

absolute opinions, then V(x ·y) = V(x)  V(y)
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Subjective logic operators 1

Opinion operator name Opinion 

operator

symbol

Logic 

operator 

symbol

Logic  operator name

Addition +  UNION

Subtraction - \ DIFFERENCE

Complement ¬ x NOT

Expectation E(x) n.a. n.a.

Multiplication · AND

Division / UN-AND

Comultiplication OR

Codivision UN-OR

п

п







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Opinion operator name Opinion 

operator

symbol

Logic 

operator 

symbol

Logic  operator name

Transitive discounting  : TRANSITIVITY

Cumulative fusion  ◊ n.a.

Constraint combination  & n.a.

Conditional deduction DEDUCTION

(Modus Ponens)

Conditional abduction ABDUCTION

(Modus Tollens)

Subjective logic operators 2

||

||
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Addition

A

y

A

x

A

yx
 


• Notation

• Probability version: P(xy)=P(x) + P(y)

• Commutative and associative.

• No corresponding binary logic operator

x y z
xy
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Subtraction

A

y

A

x

A

yx
 

\
• Notation

• Probability version: P(x\y)=P(x) - P(y)

• No corresponding binary logic operator

x\y y z
x
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Complement

• Notation:

• Involutive:

• Corresponds to NOT.  

A

x

A

x
 

A

x

A

x
  )(

x x
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Cartesian product of frames

• Multiplication assumes a Cartesian product.

• Product set has Cardinality = |X|·|Y| .

• Coarsening needed as part of computation.

product:

coproduct:

XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
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Binomial multiplication

• Notation:

• Probability version: p(xy)=p(x)·p(y)

• Commutative and associative.

• Corresponds to AND and probability product.

A

y

A

x

A

yx
 



XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
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Binomial comultiplication

• Notation:

• Probability version: p(xy) = p(x) + p(y) – p(x)p(y)

• Commutative and associative.

• Corresponds to OR and probability coproduct. 

A

y

A

x

A

yx
 



п

XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
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Multinomial multiplication

• Notation:

• Probability version: matrix multiplication

• Commutative and associative.

A

Y

A

X

A

YX
 



XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
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Non-distributivity of products

Multiplication is non-distributive on comultiplication

for opinions:

and for probabilities

Only applicable for binary logic: x  (yz) = (xy)  (xz)

)()()( zxyxzyx 
 

x
y

z


x y

zx

))()(())(( zxyxpzyxp 
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Algebraic properties

• Product:

• Coproduct:

• Complement:

• De Morgan 1:

• De Morgan 2:

)(E)(E)(E
yxyx

 


)(E)(E)(E)(E)(E
yxyxyx

 


)(E1)(E
xx

 

yxyx 
 

yxyx 
 
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Cartesian quotient of frames

• Division assumes a pre-existing Cartesian product K

• Quotient set has Cardinality = |K|/|L|

• Coarsening needed as part of computation

XY = K

),( yx ),( yx

),( yx ),( yx

X = L

x

x

Y = K/L

y

y

/ =
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Division

lk 

• Notation:

• Probability version: P( kl )=P( k )/P( l )

• Corresponds to UN-AND and probability 
division

A

l

A

k

A

lk
 /



XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
= l= k
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Codivision

lk 

• Notation:

• Probability version: P( kl )=(P( k ) - P( l ))/(1 - P( l ))

• Corresponds to UN-OR and probability codivision

A

l

A

k

A

lk
 



XY

),( yx ),( yx

),( yx ),( yx

X

x

x

Y

y

y

 =
= l= k

п
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Truth table; Products and quotients

x y AND

product

xy

OR

coproduct

xy

UN-AND

quotient

xy

UN-OR

coquotient

xy

F F F F T or F F

F T F T F undefined

T F F T undefined T

T T T T T T or F
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Online demo of SL operators

http://persons.unik.no/josang/sl/

http://persons.unik.no/josang/sl/
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Fusion in Subjective Logic
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Opinion fusion

• Notation:

• Cumulative fusion

• Averaging fusion

• Reduced to weighted average i.c.o. dogmatic opinions. 

B

x

A

x

BA

x
 



x A ,B x
A

B

x

A
 x

B
x

A  B

[      ]
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Cumulative Fusion

• Accumulates evidence from different sources

• Symbol:

• Sum of Dirichlet evidence vectors
1. Convert opinions to Dir/Beta:    

2. Add evidence vectors to get cumulative Dir/Beta

3. Convert Dir/Beta to opinion  

• Commutative and associative.

• Applicable to situations where collected 
evidence is independent
– E.g. observed over different time periods

),|(Dir 


rp

r


),|(Dir 


rp


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Averaging Fusion

• Average of evidence from different sources

• Symbol:

• Average of Dirichlet evidence vectors
1. Convert opinions to Dir/Beta:    

2. Take average of evidence vectors to produce 
an average Dir/Beta

3. Convert Dir/Beta to opinion  

• Commutative, but not associative.

• Applicable to situations where collected 
evidence is dependent

– E.g. same event observed by different observers

),|(Dir 


rp

r


),|(Dir 


rp


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Example: Reaching a verdict

• J1, J2 , … Jn are n jury members.

• “guilty”  is a binary statement.

• [J1, J2 , … Jn ]  denotes the whole jury.

• BRD is a politically defined threshold value for 
“Beyond Reasonable Doubt”.

J1

“guilty”
J2

Jn

[J1, J2 , … Jn]

?   
BRD"guilty"

21  
 JnJJ 

“guilty”
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Constraint Combination

• Notation:

• Commutative

• No corresponding binary logic operator

• Can not be applied for conflicting dogmatic opinions. 

B

x

A

x

BA

x
 

&


x [A&B] x
A

B

x
Ax

B
x

A&B



66

NISNet Finse 2011

Example constraint combination

• Alice, Bob and Clark want to go to the cinema together

• Options are: “Black Dust”, “Gray Matter” and “White Powder”

• They can only agree on watching: “Gray Matter”
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Comparing Fusion and Constraining

• Jurors A and B reach a consensus about truth of x

• Agents A and B agree on whether x is a good choice 

x A,B x
A

B

x
Ax

B
x

A  B
[      ]Fusion

Constraining x [A&B] x
A

B

x
Ax

B
x

A&B
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Trust modelling
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Trust transitivity

Direct   
referral trust

Recommendation

Direct 
functional 
trust

Indirect functional trust

2

3

4

1

Thanks to Bob’s advice, 

Alice trusts Eric to be a 

good mechanic.

Eric has proven to 

Bob that he is a 

good mechanic.

Bob has proven to Alice that  

he is knowledgeable in matters   

relating to car maintenance. 

Eric

Bob

Alice
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Trust scope 

• The trust scope defines the specific purpose(s) 
of trust assumed in a given trust relationship. 

• In other words, the trusted party is relied upon to 
have certain qualities, and the scope defines the 
trusting party’s view of what those qualities are.

• Aka: Trust purpose, trust context, subject matter
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Types of Trust

• Direct Trust as a result of direct experience

• Indirect Trust as a result of recommendations
(i.e. indirect knowledge)

• Functional Trusting entity x for scope 
(e.g. “to be a good car mechanic”)

• Referral Trusting x to recommend for scope 
(e.g. “to be reliable at recommending 
car mechanics)
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Functional trust derivation requirement

• Derivation of functional trust through a 
transitive path, requires that the last trust 
arc represents functional trust, and all 
previous trust arcs represent referral trust.

referral

trust

functional

trust

rec.

Alice Bob Claire Eric

1

2

3
functional trust

referral

trust

rec.

1

2

1
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Trust scope consistency requirement

• A valid transitive trust path requires that 
there exists a trust scope which is a 
common subset of all trust scopes in the 
path. The derived trust scope is then the 
largest common subset.

referral 

trust 1

Alice Bob Claire Eric

referral 

trust 2

functional 

trust 3

functional trust 4= 1 2  3
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Trust network building blocks
Combination of serial and parallel trust paths

Notation:
(implicit scope)

[A, E]  =  (( [A,B] : [B,C] ) ◊ ( [A,D] : [D,C] )) : [C,E]

Alice

Bob

David

Eric

3

Claire

1

derived if-trust

Trusting 
party

Trusted 
partydf-trust
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Additional aspects of trust

• Trust measure: 

– Binary (e.g. “Trusted”, “Not trusted”)

– Discrete (strong-, weak-, trust or distrust)

– Continuous (percentage, probability, belief)

• Time: 

– Time stamp when trust was assessed and expressed. 

Very important as trust generally weakens with 

temporal distance.
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Trust transitivity characteristics

Trust is diluted in a transitive chain.

trust trust trust

rec. rec.

diluted trust

A B C D

Graph notation: [A, D]  = [A, B] : [B, C] : [C, D]

Computed with transitivity operator of SL

Explicit notation: [A, D, if] =  [A, B, dr] : [B, C, dr] : [C, D, df]
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diluted trust

Trust fusion characteristics

Strengthens trust 
confidence

trust trust

rec.

rec.

Graph notation: [A, D]  =  ([A, B] : [B, D]) ◊ ([A, C] : [C, D])

A D

B

trust trust
C

Computed with the fusion operator of subjective logic

concentrated 
trust
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Indirect referral trust

2

2

3

3

1

1

A

B

C

D E

trust

rec.

Reality: ([A, B] : [B, D] : [D, E])  ◊ ([A, C] : [C, D] : [D, E])

incorrect trust
4

DANGER

Perceived                                            ([A, B] : [B, E])  ◊ ([A, C] : [C, E])
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Hidden and perceived topologies

A

B

C

E

Perceived topology: Hidden topology:

([A, B] : [B, E])  ◊ ([A, C] : [C, E])  

 ([A, B] : [B, D] : [D, E]) ◊ ([A, C] : [C, D] : [D, E])

A

B

C

E

D

D

(D, E) is taken into account twice
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Correct indirect referral trust

correct trust
2

1

1

1

A

B

C

D E

trust

rec.

Perceived and real 
topologies are equal: ( ([A, B] : [B, D])  ◊ ([A, C] : [C, D]) ) : [D, E]

SAFE
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Trust transitivity in SL

• Notation:

• Associative and non-commutative.

• Operator for transitive belief

• No correspondence to logic or probability.

B

x

A

B

BA

x
 

:
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Trust notation with subjective logic

• Agent A trust agent B for trust scope 

– Explicit notation:

– Implicit notation: (implicit trust scope)

• Example: ([A, B] : [B, D])  ◊ ([A, C] : [C, D]) 

– SL notation:

A

B )(


A

B


)()(
C

D

A

C

B

D

A

B
 

A

B

C

D
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Example: Weighing testimonies

• Computing beliefs about statements in court.

• J is the judge.

• W1, W2 , W3 are witnesses providing testimonies.

J

W1

statement xW2

W3

):():():( 321 WJWJWJ

x



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Trust network analysis with subjective logic

• Subjective logic can be used to analyse Directed 
Series Parallel Graphs (DSPG)

• Complex networks must be simplified

A

B

C E

D

Original graph:

(non-DSPG)

A

B

C E

D

Simplified graph 1:

(DSPG graph)
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Building Directed Series-Parallel Graphs

• Repeatedly apply

– Series graph composition

– Parallel graph composition 

A C

A B C

A C

A C

Series graph composition: Parallel graph composition:
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Example DSPG composition

A G

B

C F

D

E



87

NISNet Finse 2011

PKI and trust transitivity

Trust in public keys  (explicit through certificate chaining)

Trust in CA’s (implicitly expressed through policies)

 

User D

CA B

CA C

CA A

 

 

 

User E 



88

NISNet Finse 2011

C
o
m

p
u
ta

ti
o
n
a
l 
tr

u
s
t 

w
it
h
 

s
u
b
je

c
ti
v
e
 l
o
g
ic

http://persons.unik.no/josang/sl/

http://persons.unik.no/josang/sl/
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Trust model exercise 1

Write the trust expressions corresponding to the trust networks.

Try to write both network notation and subjective logic notation.

A

C

E

B

F

D

A D

E

B

FC

1.a)

1.b)
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Trust model exercise 2

• Write subjective logic expression corresponding to the certificate 

network below.

D

B

C

A

A

B

A

B B ))k(aut()(rel( 
 


A

D )k(aut


A

C

A

C C ))k(aut()(rel( 
 
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Trust model exercise 3

Draw the trust network corresponding to the following expression:

A

G

F

G

C

F

A

C

E

F

B

E

D

F

B

D

A

B
  )))())()((((
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Solutions to trust model exercises

• 1a:

• 1b:

• 2:

• 3:                                          =


A

F
 )()(

E

F

D

E

A

D

C

F

B

C

A

B
 

)()))()(((
E

F

A

E

D

F

C

D

A

C

B

D

A

B

A

F
 

))(())((
)k(aut)k(aut)(rel)k(aut)k(aut)(rel)(aut D

CAA

C

BAA

B

A

k DCDB

 

A

G


D
B

C
A

E F

G
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Bayesian belief reasoning
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),(
||||

A

xy

A

xy

A

x

A

xy
 

Conditional deduction

• Notation:

• Probability: p(y||x) = p(x)·p(y|x) + p(x)·p(y|x)

• Corresponds to MODUS PONENS and 
conditional inference.

• Ternary operator

A
y|x

x→yA A
A

x
Ax

y   x
yA

y|x

x→y
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))(,,(
||||

ya
A

yx

A

yx

A

x

A

xy
 

Conditional abduction

• Notation:

• Corresponds to MODUS TOLLENS and reverse 
conditional inference.

• Quaternary operator

y→x

A x

 A
x|y y→x A

A
y   x

y

x

 A
x|y

y

A

a(y)
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About evidence ...

‡ plus knowledge of the base rates of the hypotheses y and evidence.x

Causal evidence
directly influences the likelihood 

of one or more hypotheses.

Deductive reasoning uses 

likelihood of each hypothesis‡, 

for each piece of evidence, i.e. 

p(y|x) and p(y|x).

Derivative evidence
is usually observed in conjunction 

with one or more hypotheses.

Abductive reasoning uses 

likelihood of evidence‡, for each 

hypothesis, i.e. p(x|y) and p(x|y).
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p(y|x), p(y|¬x)

Hypothesis, yEvidence, x

Deductive vs. abductive reasoning

p(x|y), p(x|¬y)

a(x)

p(x) p(y) ?

a(y)

Abductive Reasoning
(reasoning with derivative evidence)

Deductive Reasoning
(reasoning with causal evidence) Likelihood of hypothesis, 

when the evidence is 

true; and when false.

Likelihood of evidence, 

when the hypothesis is 

true; and when false.
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The Base Rate Fallacy

• The base rate fallacy is an error that occurs
when p(y||x), the conditional probability of some
hypothesis y given some evidence x, is
assessed without taking account of the "base
rate" of y, often as a result of wrongly assuming
equality between the two inverse conditionals:
p(y|x) = p(x|y).

• The correct type of reasoning where the
conditional p(y|x) is correctly derived, is
commonly referred to as abduction.
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x1

x2

xk

.

.

.

y1 y2 yl  X Y

X

Y | x1

Y | x2

Y | xk

.

.

.

Y || X=

Parent

Child

C
o
n
d
itio

n
a
ls

 
Y

 |
X

Deduction with subjective logic
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Deduction visualisation

• Evidence pyramid is mapped inside hypothesis 
pyramid as a function of the conditionals.

• Conclusion opinion is linearly mapped  

by
1

by2

by3

u
Y

bx1

bx2

bx3

u
X

1| xY


2| xY


3| xY


XY


||


XY ||


X


Opinions on parent frame X Opinions on child frame Y

X

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Deduction – online operator demo

http://persons.unik.no/josang/sl/

http://persons.unik.no/josang/sl/
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x1

x2

xk

.

.

.

y1 y2 yl  X Y

X
.

.

.

Y || X

X | y1
X | y2

X | yl

=

Parent

Child

Conditionals X | Y

Abduction with subjective logic
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Abduction – Online operator demo
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Deduction and abduction notation

• Binomial deduction

• Multinomial deduction

• Binomial abduction

• Multinomial abduction

XYXXY |||
 

),(
||| YYXXXY

a


 

),(
|||| xyxyxxy

 

),,(
|||| yyxyxxxy

a 
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Bayesian logic

• Subjective logic represents a calculus for Beta 
and Dirichlet PDFs

• Analytically correct for 1st moment, i.e. 
expectation value.

• Approximation for 2nd moment (i.e. variance)

• Analytic or numeric combination of PDFs give 
high computational complexity

• Subjective logic gives very low computational 
complexity

• Bayesian logic
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Y

R



Z || X

Z || Y

S

T



X || R

X || S

X || T

X || (R,S,T)

Z || ( X,Y)

Node R

Node S

Node T

Node X

Node Y

Node Z

Bayesian network representation
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Forensic Reasoning Application

• The conditional relationship between observed 
evidence and malicious actions that produced it 
can be analysed with abductive reasoning.

• Need to find (action) , i.e. opinion about 
hypothetical malicious action.  

• Requires (action | evidence) and (action | no evidence)

• Can estimate (evidence | action) and (evidence | no action)

• Can derive (action | evidence) and (action | no evidence)

• Can then compute the needed (action || evidence)

• Forensic analysis with subjective logic works 
even in the presence of high uncertainty
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Exercise: Bayesian networks

1. Draw Bayesian network corresponding to:

2. Write SL expressions corresponding to 
Bayesian network on previous slide

21 |||| YZYZZ
 

2|||| 1111 XYXYY
 

322 || XYY
 
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Solution 1 – Bayesian network

Y2 || X3



Z || Y1

Z || Y2



Y1 || X1

Y1 || X2

Y1

Z 

Node Y1

Node Y2

Node Z

X3

Node X3

X1

Node X1

X2

Node X2
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Solution 2 – Bayesian network

YZXZZ ||||
 

TXSXRXX ||||||
 
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Final remarks

• Subjective logic

– Compatible with

• Binary logic

• Probability models

– Includes degrees of uncertainty

• Suitable for modelling realistic situations

– Approximation of complex analytical models

– Fast computation

– Suitable for modelling trust networks

– Analysis of situations with significant uncertainty,

• Intelligence analysis

• Possibly suitable for cryptanalysis
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Thank you for your attention!

Questions?


