Forsvarets forskningsinstitutt

Architecture Patterns for a Ubiquitious Identity Management System NISNET Finse School 2011

Anders Fongen, PhD Norwegian Defence Research Establishment May 2011

Identity Management (IdM)

FFI 🕜

- Identity:
 - Set of properties associated with an Entity
- Identifier:
 - Subset of properties to *distinguish* identities
- Identity Statement:
 - Attestation of the subject's identifier
- Identity Provider (IdP)
 - Service which issues identity statements
- Identification
 - Establishment of identity

Figure 1: Correspondence between entities, identities and characteristics/identifiers.

IdMs are suffering from:

- Discarding existing investments
 - need separate user registries
- High coupling between domains
 - guest users individually registered
 - autonomy delegated for federation
- Visibility of user identities
 - access given to identities, not roles
- Driven by security excellence, not networking excellence
 - protocols too costly for "narrow and bumpy" networks

Figure 3: Federated user identity model.

IdM systems should

- Protect investments and knowledge
 - Employ existing enrollment procedures and data storage
- Allow federation for "guest access"
 - Should not need to enroll guests
- Give access rights to *roles*, not identities
 - RBAC, ABAC
- Protect domain autonomy
 - owner of service decides the access control
- Allow system latency
 - trust has a lifetime
- Limit the trust relationships
 - minimize the "trust anchors"
- Balance requirements between security and network economy

Cross Domain Identity Management

- Inside each domain:
 - User key/certificate management
 - User roles/privileges management
- Between domains:
 - Trust in others' authentication process
 - Trust in integrity of user attributes
 - No management of foreign users
- Role based authorization process
 - since identity of guests are "unmanaged" in host domain

Tactical networks – ubiquitous computing

- Mobile, wireless, based on military radio technology
 - spread spectrum, strong encryption
- Low bandwidth (< 100 kb/s, depending on range)
- Multi-hop, Ad-hoc
 - latency
 - packet loss
 - link loss
- Applications adapted for tactical networks are frugal, robust and perserverant, which are desirable properties everywhere
 - tactical applications are fit for ubiquitous computing

Revocation and Tactical Networks

- Identity credentials may need to be *revoked*
- Revocation of identity information requires bandwidth and connectivity
- Revocation checking is expensive and error-prone
 - since one actually asks the opposite question
- The work presented
 - relies on short-lived "identity statements" which require no revocation scheme,
 - the identity statements are derived from X.509 certificates maintained in a PKI

The GISMO IdM Architecture

The Identity Statement

- Attested binding between properties and identifier
 - public key, attributes
- Signed by a trusted issuer
- Expires
- Both clients and services presents their identity statements in order to provide *mutual* authentication

Subject identifier
Subject public key/x509 cert
Subject attribute 1n
Validity period (from-to)
Issuer identifier
Issuer public key/x509 cert
Issuer's signature

Trust assumptions

- The identity statement is issued (and signed) by the IdP
 - The service providers need trust in the IdP
 - that the identity statement are "correct"
- The service providers trust the authenticity of a client who demonstrates a private key (proof-of-possession)

Trust relations

- IdP-B (Identity provider in domain B) trusts the authentication process of IdP-A.
 - it vouches for IdP-A by re-signing the identity statement
 - makes it into a domain-B security document

Advantages of GISMO IdM

- Administrative and Authority Issues
 - autonomy of domains and COI
 - loose coupling between domains (certificate pair)
- Scalability issues
 - no CRL distribution
 - single domain user management
- Mobility / Tactical issues
 - occational service invocations with IdP
 - client-A and server-B can connect independent on IdP reachability

