
27-4-2010

1

Winterschool NISNet-Finse 25-30 April 2010

Berry Schoenmakers
Coding & Crypto group

Department of Mathematics & Computer Science

Tuesday April 27 9:00-12:30h

Electronic Voting

Outline

• Evoting and cryptography:

• Intro & high-level approach

• Building blocks

• Classification of approaches

• Overview of (cryptographic) primitives

• Example voting schemes

• Specific protocols:

• Interval proofs

• Client/server tradeoffs

Throughout, we consider national/general

elections, hence high(est) security level.

27-4-2010

2

Introduction
Voting & Cryptography

The Software Crisis

• Coined by F.L. Bauer in 1968; publicised by

Edsger W. Dijkstra in his Turing award lecture in

1972.

• Symptoms:

− Projects running over-budget.

− Projects running over-time.

− Software was of low quality.

− Software often did not meet requirements.

− Projects were unmanageable and code difficult to

maintain.

• New software engineering methodologies tend

to help, no „silver bullet‟ though

• even to this day
Source: Wikipedia

27-4-2010

3

Recent developments … DREs

• US (California), August 3, 2007
• Secretary of State Bowen decertifies all electronic voting

systems for California
− Diebold, Hart Intercivic, and other systems

• Netherlands, September 27, 2007
• Secretary of State Bijleveld decertifies all electronic voting

systems for the Netherlands
− percentage e-voting grew to close to 100% !

− NedAp and NewVote SDU machines

• Critical evaluations revealed lots of problems
• Prior certification apparently meaningless!!

• Back to paper-based elections?!
• Currently, in the Netherlands, parts of Germany, and other

places (e.g., things in England got rather messy too)

Direct-Recording

Electronics

The E-Voting Crisis

• Symptoms:

− E-voting laws apparently meaningless, under-

developed

− Certification apparently meaningless, not strict enough

− Voter confidence seriously hit, or indifference?

− Implementations of systems of low quality

− Management/operation of systems poor

− No consensus among scientists; argue (or, fight?) with

each other – what should policy makers make of this?

− Lack of international standards and open specifications

27-4-2010

4

Nature of E-Voting

• E-voting: probably single most controversial

application in the field of information security

• involves almost any area in information security, from

computer security and cryptographic issues to human

psychology and legal issues

• a minefield of paradoxes

• a truly wide variety of approaches and e-voting systems

have been proposed

27-4-2010

5

Recently appeared handbook chapter

Electronic elections

• Solve security and privacy issues:

• By trust?

• By legal measures?

• By technology? Yes, using cryptography!

• Cryptographic approaches to electronic elections have

been studied since early 80s, in three waves:

• Chaum on anonymous communication (MIXes), J. ACM 1981

• Concepts and feasibility of voting protocols

• emergence of the World Wide Web, huge interest in remote

voting. Emphasis shifted to efficiency concerns, resulting in

quite practical schemes.

• the `Florida 2000' US election fiasco, which renewed interest

in voting from polling stations, leading to voting schemes

which combine cryptographic and physical aspects.

1980

1990

2000

27-4-2010

6

“Cryptography for Democracy”

• Focus on role of cryptography

• classical cryptography

− basic authentication and encryption techniques

• modern cryptography

− zeroknowledge proofs, secret sharing, commitments,

secure multiparty computation, blind signatures

− good for resolving paradoxes

• Cryptography helps to isolate and to solve particular

subproblems.

Remote vs polling station e-voting

• In both cases, encrypted votes can be used

• tallied without revealing individual votes

• Remote e-voting:

• voters themselves compute encrypted votes

• can be fully electronic

• Advanced polling station e-voting:

• authorities compute encrypted votes

• typically voter marks vote on some physical (paper)
ballot (Pret-a-Voter / Punchscan)

27-4-2010

7

Solution = Scheme + Infrastructure

• Voting scheme: cryptographic core of the system,

protects even against insiders (who run the system)

• Security infrastructure: required to stop a

multitude of attacks, related to e.g.:

• Security of client and server computers

• Security of (voting) application software

• Security of communication between these computers

• …………….

• Shortcomings of a cryptographic scheme, in

particular, the lack of universal verifiability,

cannot be remedied by strengthening the

security infrastructure

In the end, a

risk analysis

should

determine the

residual risk

I. Thou shalt keep each voter's choices an
inviolable secret.

II. Thou shalt allow each eligible voter to vote
only once, and only for those offices for which
she is authorized to cast a vote.

III. Thou shalt not permit tampering with thy voting
system, nor the exchange of gold for votes.

IV. Thou shalt report all votes accurately.

V. Thy voting system shall remain operable
throughout each election.

VI. Thou shalt keep an audit trail to detect sins
against Commandments II-IV, but thy audit trail
shall not violate Commandment I.

Six commandments (M. Shamos ‘93)

Old, informal list. But do we really have a better one ?!

27-4-2010

8

Hard nut to crack

• Privacy and verifiability at the same time

• Ballot Secrecy:

• even when the system is fully audited, all individual

votes should remain private

− vs. outsiders and insiders

• Universal Verifiability:

• anyone (incl. observers, auditors) is able to verify the

integrity of the election result against the encrypted

votes cast by legitimate voters

Two “opposite” approaches

• Go extremely “small”:

• special-purpose computer, to execute nothing else than
the voting protocol

• master key stored inside

• Go distributed (and scalable):

• multiple voting servers & talliers

− threshold security

− extreme case: “board room elections”

− all voters are talliers too (like in peer-to-peer
systems)

− currently not realistic for performance reasons

27-4-2010

9

The audit illusion (Michael I. Shamos)

• Can we really audit a computer system?

− How to ensure that a computer behaves as

advertised?

− How to monitor the system while its active?

− And, how to convince others that this is indeed the

case

• Think of kleptography, and covert channels

• often it suffices to get the master key

• attack may then continue “offline”

• Is the random number generator really random?

• Single tallier sees everything:

• Random split between two talliers:

• Number of talliers can be varied independently of other
characteristics of the voting system

Scalable, distributed trust

 Tallier

Alice Yes 1

Bob No 0

Carol Yes 1

Diana No 0

Total 2

 Tallier 1 Tallier 2

Alice Yes -1287 +1288

Bob No -1999 +1999

Carol Yes -769 +770

Diana No -1334 +1334

Total -5389 +5391 +2

27-4-2010

10

Bulletin Board model

Bob

56459845645454766

signed
Carol

49135784578454685

signed

Tallier #1

Sub-tally 1
32234555459085752

signed

Tallier #2
Sub-tally 2
72378867307863836

signed

Alice

56805761456784158

signed

Sub-tally 10
89873538968735603

signed Tallier #10

………….

Diane

59643456456845463

signed

………….

………….

………….

Registered

voters Registered

talliers

Scrutineers/observers

(or, just anybody)

V

E

R

I

F

I

A

B

L

E

M

I

X

E

S

Verifiable MIXes

Voter

Voter

Voter

Voter

vote2

vote3

encrypt votes using
talliers' public key

blind and permute plus
zeroknowledge proof

Vote server

vote1

vote3

vote1

vote2

vote2

vote1

vote3

MIX server MIX server

vote1

vote2

vote3

Talliers

vote2

vote1

vote3

result

threshold
decrypt

…

Verifiable MIX

27-4-2010

11

Implementation of BB

Message

MessageMessageMessageMessageMessage

Receipt

Receipt

Receipt

Receipt

Receipt

Receipt

1. Message arrives

2. Replication

3. Consistency checks

4. Threshold signature

5. Receipt is returned

Bulletin Board

• Properties (public broadcast channel):

• Anyone can read BB

• Nobody can erase anything from BB

• Voters, talliers, officials write ballots to their own sections,

signed with their public keys

• BB produces signed receipts (threshold signature)

− VOTE & VERIFY & GO PROPERTY

− if receipt OK, the protocol guarantees that the vote

will be counted as cast

− no further checking by voters afterwards

27-4-2010

12

Universally Verifiability of Elections

Black Box

Counting Process

using private keys

of one or

multiple talliers

E1 = Ballot Alice

E2 = Ballot Bob

E3 = Ballot Carol

Em = Ballot Diane

T = Final Tally

Aux = Sub-tallies

Verify (E1,…,Em, T, Aux, public keys of talliers) = accept or reject

Universal Verifiability of Digital Signatures

Signing

using private key

Message Signature

Verify (Message, Signature, public key of signer) = accept or reject

Black Box

(e.g., HSM)

Signing

using private key

27-4-2010

13

Inside the verifiable „tally‟ black box

• Essentially, a secure multiparty computation

• input: encrypted votes E(x1),…,E(xn)

• output: election result f(x1,…,xn)

• Note: election result need not contain the individual
tallies of candidates/options, e.g.:

− outcome of referendum could be “majority says „no‟ ”
(Shamir suggested this already in 1980s, see Benaloh‟s
PhD thesis)

− outcome of a parliamentary election could be the
assignments of seats

− hard/impossible for paper-based elections !!

Homomorphic vs. mix-based tallying

• Homomorphic: decrypt product of all encrypted

votes

• fast tallying

− in total, one threshold-decryption

• zeroknowledge proof of validity per vote

− can be costly

• Mix/shuffle based: cascade of verifiable mixes,

followed by decryption of ind. votes

• sequential, relatively slow tallying

− one threshold-decryption per vote

• works for any type of vote

− constant amount of work for voter

27-4-2010

14

What about coercion?

• Two levels of ballot secrecy (privacy):
• Level 1: ballot secrecy cannot be broken without help of

voters

• Level 2: ballot secrecy cannot be broken even with help of
voters (receipt-freeness, no vote selling)

• Encryption of votes
• Should not be deterministic:

− From EPK(v) anyone can find vote v

• But probabilistic:

− EPK(v,r) with r a sufficiently long, random string

• Problem: voter reveals r to prove to a coercer
what its vote v is

Use of randomizers

• Randomizer (e.g., special smart card):

− must cooperate to cast a vote successfully

− cannot change vote

− adds randomness s.t. voter doesn‟t know r anymore

• Randomizers ensure receipt-freeness:

− voter cannot prove to someone else what vote is

− does not help against family voting

• Number of randomizers can be varied (per voter):

− no randomizer: if coercion is considered unlikely

− 1 randomizer: if randomizer is trusted

− multiple randomizers: if randomizers might be

corrupted

27-4-2010

15

Alternative: polling-station e-voting

• Voting machine will compute encrypted vote for the

voters

• Issue: how to check the voting machine?!

• Example scheme: Pret a Voter.

Summary of what it takes …

• Secure bulletin board (messages cannot be deleted)

• Use of threshold cryptography for scalable, distributed
trust

− threshold signature for receipts

− threshold decryption of votes

• Efficient implementation of verifiable black box

• Strong voter authentication
• preferably, assuming a PKI

• Open specifications/standards for protocols
• independent implementations of vote clients, tally clients etc

− required to get true “threshold cryptography”

− not necessarily open-source (gives competitive advantage,
and results of tallying are verifiable anyway)

• Also, randomizers: component to supply randomness in
voting protocol, to prevent the voter being able to “open”
its encrypted vote

27-4-2010

16

Building

Blocks

Taxonomy

• Taxonomy = practice and

science of classification

• Classification based on

suitable characteristics

• E.g., kingdoms of Plantae

versus Animalia and Fungi:

• characteristic = “Use of

photosynthesis”

Wikipedia

http://en.wikipedia.org/wiki/File:Biological_classification_L_Pengo_vflip.svg
http://upload.wikimedia.org/wikipedia/commons/a/ac/Systema_Naturae_cover.jpg

27-4-2010

17

Towards a Taxonomy of Voting Schemes

• Characteristics:

• Presence/absence “easy” to determine

• Independent of security claims/properties

• Useful characteristics:

• voting protocol requires interaction between voters, or

voters can proceed in parallel

• voted ballot is anonymous vs. identifiable.

• voted ballot contains vote in the clear (derivable from

public information only), or in encrypted form

• how votes or voted ballots are authenticated

voted ballot := all

information recorded

upon completion of

the voting protocol

Vote casting Vote tallying

27-4-2010

18

Vote casting and tallying combined

Pn P1

P2

x1

x2

xn

Party 1 votes and encrypts

Parties 2 to n-1 vote,

partial-decrypt and reencrypt.

Party n votes and decrypts

All parties must participate!

Building blocks

• Primitives are divided into 4 categories:

• Communication primitives

• Authentication primitives

• Encryption primitives

• Verification primitives

• Most of these primitives are cryptographic primitives

while some are beyond the scope of cryptography.

27-4-2010

19

Communication Primitives

• Secure channel: communication channel protected

against eavesdropping, possibly providing end-to-end

authentication as well, achieving computational security.

• Private channel: same as secure channel, but achieving

information-theoretic security.

• Untappable channel: totally unobservable (out-of-band)

communication channel.

• Anonymous channel: communication channel which

hides the sender‟s identity; possibly allows for an

acknowledgement by the receiver as well.

• Bulletin Board: publicly readable broadcast channel,

possibly with authenticated write operations.

• Also directed links, and combinations

Authentication Primitives

• External vs. internal voter authentication:

• External authentication links with the list of

eligible/registered voters

• Internal authentication used in addition to external

authentication; internal to the voting scheme

• External authentication primitives:

• Anything from an electoral roll, ID cards, to symmetric

crypto (incl. passwords) to asymmetric crypto (digital

signatures, one-time signatures, PKI)

• Internal authentication primitives:

• Anonymous signatures:

− Blind / group / restrictive blind / ring / list signatures

− signer does not learn message and signatures

27-4-2010

20

Encryption Primitives

• Used for vote encryption

• Symmetric and asymmetric cryptosystems

• Homomorphic encryption: E(x + y) = E(x) * E(y)

• Ex. ElGamal E(x) = (gr , hr gx) with r random

• Threshold decryption

• t out of n parties must cooperate to decrypt the election

result, and are assumed not to decrypt anything else

• no single party ever knows the decryption key

• Also covers use of commitments and secret sharing:

• Ex. voter commits to vote and distributes shares of

vote between talliers

− gives information-theoretic privacy

− requires private channels

− not even t-1 parties do so

Verification Primitives

• Zero-knowledge proof: proof for a statement without

giving away why it is true.

• Validity proof: zero-knowledge proof showing the validity

of an input, or step performed in a protocol.

• Designated verifier proof: noninteractive zero-knowledge

proof bound to a particular public key which only convinces

the holder of the corresponding private key.

• Examples:

• Voters: prove encrypted ballots are correctly formed

• Talliers: prove decryption is done correctly

• Voting machine gives designated verifier proof to voter

Non-interactive zeroknowledge proofs give universal verifiability

27-4-2010

21

Homomorphic encryption

• Public key cryptography:

• Diffie-Hellman key-exchange in 1976

• RSA encryption, RSA signatures in 1977

• “Privacy homomorphisms” in 1978 by Rivest et al.:

• Product of two RSA encryptions corresponds to

product of the two messages

c1 = m1
e mod n “encryption of message m1”

c2 = m2
e mod n “encryption of message m2”

c = c1 c2 = (m1 m2)
e mod n “encryption of message m1 m2”

Homomorphic encryption

WARNING

• Cryptosystems with homomorphic properties are bad

• enable adaptive chosen-ciphertext attacks

• make ciphertexts malleable (making known changes to an

unknown plaintext)

• But these properties are very useful for cryptographic

protocols when used with care

• malleability must be stopped by other means such as

zero-knowledge proofs

27-4-2010

22

Homomorphic encryption

• Popular choices:

• Goldwasser-Micali encryption 1984, RSA setting

• ElGamal encryption 1985, Discrete Log setting

• Paillier encryption 1999, RSA setting

• These schemes handle either addition or multiplication

but not both at the same time.

• New development:

“Fully homomorphic encryption” by Craig Gentry, 2009

• Handles both addition and multiplication of encrypted

values (or, equivalently, the NAND function)

• Based on lattices, the “geometry of numbers”

• Disadvantage: not efficient in practice

Secret sharing

• How to split a secret value into two shares such that:

• Individual shares do not reveal the secret

• Combining both shares yield the secret

E.g., a secret key 010101011111001101100001.

Split it in half? No, bad idea.

• How to “split a secret bit” s into two shares?

• - choose a bit r uniformly at random

• - put s1 = r and s2 = r + s (mod 2)

• - then s1 and s2 are fully random on their own but

when combined yield s = s1+s2

27-4-2010

23

Visual Secret sharing Naor, Shamir „97

+ =

+ =

Applications of secret sharing

• Basically serves to avoid the use of a single trusted

party:

• trusted party is replaced by multiple parties of which,

say, a majority is assumed to be honest.

• Also related to random masking as used to counter

1st –order DPA (Differential Power Analysis) attacks

27-4-2010

24

Zero-knowledge proofs

• Q1: How to convince a (skeptical) verifier that

you know the solution to a puzzle?

A1: Simply show the solution!

• Q2: Same question, but now you don‟t want to give

away any information on the solution?

A2: Prove in zero-knowledge that you know the solution.

Where‟s Waldo?

in

Waldo

(a.k.a. Wally)

Find

27-4-2010

25

In what sense is this zero-knowledge?

• Peephole shows nothing but Waldo, and we already

know how Waldo looks.

• In other words, you could make this final view

yourself without any help of the prover:

• Stick a small picture of Waldo behind the peephole

• In crypto speak: you can simulate the view

• Simulation paradigm:
“everything that the verifier learns from the proof,

could be constructed (efficiently) by the verifier itself

– without knowing the solution”

27-4-2010

26

Soundness

• The proof should also be sound:

• Prover only be able to convince the verifier if the prover

actually knows the solution

• So, cheating as done in a simulation should be

excluded:

• make sure prover doesn‟t have small pictures of Waldo

hidden somewhere – checking this may be awkward

• Achieving soundness & zero-knowledge can be done

efficiently based on number-theoretic constructions.

How about arbitrary puzzles ?

• NP-complete problems are notoriously hard “puzzles”

• Example: traveling salesman problem

• Proving that you know a solution amounts to proving

that you know how make a certain Boolean formula φ

evaluate to true

Example: φ = (w  ¬x  y)  (x  ¬y  z)  …

Formula φ is very big, and it gets very hard to make all

clauses true at the same time.

Suppose we know a solution, let‟s prove this in zero-

knowledge – using lots of Waldo puzzles.

27-4-2010

27

Boolean connectives: AND, OR, NOT

• AND “”

• take two puzzles

• prove that you know solutions to both of them

• OR “”

• take two puzzles

• prove that you know solution to one of them without

showing which puzzle you are solving

• NOT “¬”

• cut one puzzle in half

• prove where Waldo is in one piece

• then Waldo is not present in the other piece

Zeroknowledge satisfiability of φ

• Let φ = (w  ¬x  y)  (x  ¬y  z)  … and

suppose you know what value to assign to

w,x,y,… to make φ = true

• For each variable, say w, do this:

− cut a puzzle in half

− label the piece where Waldo is

with w if w=true, and with ¬w if w=false

− label the other piece with the complement

• For each clause, say w  ¬x  y, do an OR proof:

− select the pieces labeled by w, ¬x, y

− Waldo is in at least one of these pieces

− prove that you know where Waldo is in one of

these pieces without showing which piece

w ¬w

¬x x

¬y y

http://images.google.com/imgres?imgurl=http://findwally.co.uk/fankit/graphics/IntlManOfLiterature/Scenes/DepartmentStore.jpg&imgrefurl=http://findwally.co.uk/fankit/graphics/IntlManOfLiterature/&usg=__-wOThnjWk-ryHBr_olYXegLlgKs=&h=768&w=1024&sz=369&hl=en&start=2&um=1&itbs=1&tbnid=N1fXD6vmahsgpM:&tbnh=113&tbnw=150&prev=/images?q=where's+waldo&hl=en&rls=com.microsoft:en-us&rlz=1I7ADFA_en&sa=X&um=1
http://images.google.com/imgres?imgurl=http://findwally.co.uk/fankit/graphics/IntlManOfLiterature/Scenes/DepartmentStore.jpg&imgrefurl=http://findwally.co.uk/fankit/graphics/IntlManOfLiterature/&usg=__-wOThnjWk-ryHBr_olYXegLlgKs=&h=768&w=1024&sz=369&hl=en&start=2&um=1&itbs=1&tbnid=N1fXD6vmahsgpM:&tbnh=113&tbnw=150&prev=/images?q=where's+waldo&hl=en&rls=com.microsoft:en-us&rlz=1I7ADFA_en&sa=X&um=1
http://images.google.com/imgres?imgurl=http://www.findwaldo.com/fankit/graphics/IntlManOfLiterature/Scenes/TheGobblingGluttons.jpg&imgrefurl=http://www.imcpl.org/kids/blog/?p=794&usg=__8TXuM0z3Yg6C7Vw4GznqKfWE0Mw=&h=768&w=1024&sz=516&hl=en&start=69&um=1&itbs=1&tbnid=cnDaC4GL77HHQM:&tbnh=113&tbnw=150&prev=/images?q=where's+waldo&ndsp=18&hl=en&rls=com.microsoft:en-us&rlz=1I7ADFA_en&sa=N&start=54&um=1
http://images.google.com/imgres?imgurl=http://www.findwaldo.com/fankit/graphics/IntlManOfLiterature/Scenes/TheGobblingGluttons.jpg&imgrefurl=http://www.imcpl.org/kids/blog/?p=794&usg=__8TXuM0z3Yg6C7Vw4GznqKfWE0Mw=&h=768&w=1024&sz=516&hl=en&start=69&um=1&itbs=1&tbnid=cnDaC4GL77HHQM:&tbnh=113&tbnw=150&prev=/images?q=where's+waldo&ndsp=18&hl=en&rls=com.microsoft:en-us&rlz=1I7ADFA_en&sa=N&start=54&um=1

27-4-2010

28

Zero-knowledge applications.

• Secure identification: prove that you know the secret

key without giving away any other information

• contrasts sharply with use of passwords

• more like challenge-response protocols

• Allows for selective disclosure of information:

• prove that you are over 21, without giving any more

information on your age

• Generally, zero-knowledge proofs are used in

cryptography to let a party prove that it behaved

according to the protocol

Basic Voting

Schemes

27-4-2010

29

Electronic elections

• Electronic elections form a primary example of a secure

multiparty computation.

− referendum with yes=1, no=0:

f(x1, x2,…, xn) = x1 + x2 + … + xn

− STV (Single Transfer Voting), where votes xi

are ordered lists of (all) candidates:

f(x1, x2,…, xn) = “complicated function defined

in rounds determining the winners”

Secure multi-party computation

Pn P1

P2
Trusted party evaluates

f(x1,...,xn) correctly,

keeping the

inputs x1,...,xn private

x1

x2

xn

27-4-2010

30

Eliminating the trusted party

Pn P1

P2
Joint protocol to evaluate

f(x1,...,xn) correctly,

each Pi contributing

its private input xi

x1

x2

xn

Ideal voting scheme vs real one

• Ideal voting scheme assumes trusted party. Real

scheme must do without.

• Note that in the ideal scheme:

• Votes remain absolutely private, except what is implied

by the election result

− Voters cannot even prove how they voted if they

wanted to (receipt-freeness)

• No intermediate results are revealed

• By definition the election result is correct and

everybody is convinced of that fact

• How to do this without a trusted party?!

27-4-2010

31

Problem: level of trust in insiders

• Attackers

• Outsiders, i.e., anyone on the Internet:

− May try to attack the SSL connection or the server.

− Relatively easy to counter
− basic encryption/authentication techniques

• Insiders, i.e., those who run the election:

− May try to alter the election result

− May try to learn people‟s votes

− Much harder to counter
− using modern cryptographic tecniques

"Those who cast the votes decide nothing.
Those who count the votes decide everything.“

Josef Stalin

ElGamal encryption

• Receiver‟s private key: x

• Receiver‟s public key: h = gx

• Sender encrypts plaintext m:

(a, b) = (gw, hw m),

using a random w

• Receiver decrypts ciphertext (a, b):

b / ax = m

Sender Receiver
(a, b)m m

h usesuses x

ciphertextplaintext plaintext

27-4-2010

32

One-way functions

• Example: discrete exponentiation

x → gx

• If well-chosen:

• Function is easy to apply (forward direction)

• But very hard to invert (reverse direction)

• Toy example: x → 2x mod 101

• For cryptography:

• use a very large prime p (say 1024 bits)

• one can also use elliptic curves, of course.

Plot of 2x for x = 0 to 100

20 40 60 80 100

2. 1024

4. 1024

6. 1024

8. 1024

1. 1025

27-4-2010

33

20 40 60 80 100

20

40

60

80

100

Plot of 2x mod 101

20 40 60 80 100

20

40

60

80

100

Plot of 2x mod 101

27-4-2010

34

Homomorphic ElGamal encryption

• Consider a vote v  {1,0} ≈ {yes,no}

• Ballot is ElGamal encryption of vote gv:

(a, b) = (gw, hw gv),

using a random w

• Homomorphic property:

(a, b) * (a', b') = (a a', b b') = (gw+w′, hw+w' gv+v')

• Tallying: decrypt product of all ElGamal
encryptions to find sum of votes.

Use of zeroknowledge proofs

• Question: How to prevent voters from sending in
ballots like these?

(a, b) = (gw, hw g2) double yes

(a, b) = (gw, hw g-4) -4 times yes

(a, b) = (gw, hw g1000) 1000 times yes

• Answer: use zero-knowledge proofs to prove

that each ElGamal encryption contains either g0

or g1 without revealing any additional
information.

27-4-2010

35

Schnorr‟s identification protocol

• Discrete log setting (same as for ElGamal):

• generator g of order q, gq = 1

• cyclic group: 1, g, g2, … , gq-1

• Prover‟s private key: random x  q

• Prover‟s public key: h = gx

• Prover convinces the verifier that it knows private key x,

corresponding to public key h, without leaking

information on x.

70

Schnorr‟s identification protocol

“commitment” a

challenge c

response r

Prover Verifier

random w  q

a = gw

r = w + x c

gr = a h c?

random c  q

Efficient: prover needs to do a cheap exponentiation only

71

27-4-2010

36

Zero-knowledge proofs

• Protocol between prover P and verifier V

• P must convince V that P knows some secret information
without leaking any additional information related to the
secret.

• Soundness (in the verifier‟s interest):

• only if the prover actually knows the secret, the prover may

successfully complete the protocol

• Zero-knowledge (in the prover‟s interest):

• no information on the prover‟s secret should leak at all,

even after many executions of the protocol

72

Soundness property

After sending commitment a, only a prover knowing

the secret key can answer any challenge of the

verifier

Lemma: if a prover is able to answer two different

challenges c ≠ c’ with proper responses r,r’, for the

same initial message a, then the prover actually

knows x

Proof: If gr = a hc and gr = a hc

then (divide) gr-r = a hc / a hc = hc-c

so h = g(r-r)/(c-c)

hence (since h = gx) x = (r-r) / (c-c)
73

27-4-2010

37

Zero-knowledge property

• Captures the idea that no information leaks.

• For Schnorr‟s protocol: consider triples (a,c,r) for arbitrary

interactions between the prover and the verifier. These

triples are from a distribution that can easily be simulated

without using the prover‟s secret key x:

• pick values for challenges c′ and responses r′ at random, and

set a′ = gr′ h-c′ .

• simulated triples (a′,c′,r′) follow exactly the same distribution

as triples (a,c,r) from real executions of the protocol

74

Zero-knowledge intuition

“commitment” a

challenge c

response r

Prover Verifier

random w  q

a = gw

r = w + x c

gr = a h c
?

random c  q

Simulator

1. random c′  q

2. random r′  q

3. a′ = gr′ h-c′

Game 1:

verifier repeatedly executes

protocol and writes down (a,c,r)

Game 2:

verifier repeatedly runs simulator

and writes down (a′,c′,r′)

Games 1 and 2

give the same results

(triples follow same probability distribution)

 Zeroknowledge: executing protocol

with prover does not help

verifier in learning the secret key x

27-4-2010

38

Some other ZK proofs

• Given two generators g1, g2

• Given two “public keys” h1, h2

• ZK proof that two discrete logs are equal:

logg1 h1 = logg2 h2

without revealing this value.

• ZK proof for 1-out-of-2 discrete logs, but without

revealing which of the two discrete logs one actually

knows:

logg1 h1 OR logg2 h2

76

Equality of two discrete logs

• Proof of knowledge for logg1 h1 = logg2 h2:

• prove knowledge of x s.t. h1 = g1
x , h2 = g2

x

a1 , a2

c

r

Prover Verifier

random w  q

a1 = g1
w

a2 = g2
w

r = w + x c
g1

r = a1 h1
c?

random c  q

g2
r = a2 h2

c?
77

27-4-2010

39

1-out-of-2 discrete logs

• Proof of knowledge for logg1 h1 or logg2 h2

• Suppose that the prover knows x2 = logg2 h2, but not
logg1 h1

• run an instance of Schnorr‟s protocol

− given x2 and h2 = g2
x2

• simulate an instance of Schnorr‟s protocol

− given h1

• allow one degree of freedom for the prover by letting
the prover split the challenge c into two parts c1,c2 such
that c = c1 + c2

78

1-out-of-2 proof

Prover (knowing x2) Verifier

Pick random r1 ,c1 ,w2

a1 = g1
r1 h1

-c1

a2 = g2
w2

Pick random

challenge c

a1 ,a2

c

c1, r1 ,c2, r2 Verify: c1+c2 = c

g1
r1 = a1 h1

c1

g2
r2 = a2 h2

c2

c2 = c - c1

r2 = w2 + x2 c2

Blue: simulated proof for h1

Green: real proof for h2

27-4-2010

40

Noninteractive proofs

• Similar to Schnorr signatures.

• Let m be the message to be signed.

• Essentially put challenge c = H(m,a) in Schnorr‟s

protocol, where H is a cryptographic hash function.

• Verification of Schnorr signature (c, r) on message m:

c = H(m, gr hc)
?

80

Threshold Homomorphic approach

• Each voter posts a homomorphic ElGamal encryption:

(ai, bi) = (gwi, hwi gvi)

plus a zero-knowledge proof that vi=0 or vi=1

• Compute (Pi ai , Pi bi) = (gW, hW gT)

with W = Si wi and T = Si vi

• Talliers threshold-decrypt (gW, hW gT)

to get gT and finally T (Pollard-λ)

27-4-2010

41

Threshold ElGamal cryptosystem

• Threshold cryptosystem, public key h = gs :

• talliers A1,…, An share secret s

• key generation & decryption [Pedersen„91]

• Shared-key generation protocol yields share sj of secret
s for tallier Aj , public part hj = gsj

• Joint decryption: given (X,Y) = (gW, hW gT) :

• each Aj produces share zj = X
sj

• Aj proves share‟s correctness: logg hj = logX zj

• Lagrange interpolation:

− Xs from sufficiently many correct zj values

Encrypted Voting without computer

(schemes like Pret-a-Voter, PunchScan)

YES

NO

#1234

NO

YES

#5678

Ballot forms:

• perforated in the middle

• options permuted in

random order on each

ballot form

• numbered for tallying

27-4-2010

42

YES

NO

#1234

X

#1234

Voting:

•mark choice;

•remove left-hand side;

•right-hand side is tallied

(and serves as receipt)

Tallying:

seq # links to encrypted vote;

flip if necessary;

tally verifiably

(encrypted votes prepared

beforehand by authorities)

Encrypted Voting without computer

(schemes like Pret-a-Voter, PunchScan)

Technically same as “masked ballots”

• Sako/Kilian 1994, also in CFSY96, CGS97

• Used in implementations such as CyberVote.

• Example:

• consider binary yes/no votes in {0,1}.

• prepare an encrypted bit uniform random b, including
the validity proof that b=0 or b=1.

• voter votes v by setting „flip‟ bit s = b  v

• By the way, note that CFSY96 already uses
commitments rather than encryptions to encapsulate
the votes.

27-4-2010

43

Usability concerns

• Permuted candidates on ballots, etc., etc. ….

• not even allowed, can cause lots of confusion

• user-interface should be as simple as possible

• Else we may see these book titles:

− “Voting for Dummies”

− “Vote verification for Dummies”

− “Learn how to vote in 21 days”

− “Refresh your voting skills – subscription payable

every 4 years”

− “Voting courses–now on HD-DVD and Blu-ray”

Security issues Pret-a-

voter/Punchscan

• Ballot stuffing not excluded:

• Individual voter verifiability does not guarantee that no

votes have been added

− e.g., votes cast for voters who don‟t show up

• Randomization attack:

• Coercer says: mark the top choice

− Pre: yes 51% no 49%

− Coerce 4% voters (only yes voters)

− Post: yes 51-2=49% no 49+2=51%

• I‟ve noted this problem for Hirt/Sako 2000 paper: also

use permuted candidate lists to get receipt-freeness

X

#1234

27-4-2010

44

Practical applications

• A shadow election in May 1998, during the Dutch

national elections (with DigiCash, Cap Gemini,

D66, NLSign, ...)

• Seattle-based company VoteHere.net used

universally verifiable elections schemes

• many trials, including the first binding Internet election

(Alaskan Republican Straw Poll for US president)

• EU project Cybervote

• TUE provided cryptographic protocol + impl.

• http://www.eucybervote.org/

• EADS ran election with 600000 eligible voters in June

2006 (French Ministry of Foreign Affairs).

• Helios, Louvain-la-Neuve, also for IACR election test

Advanced

Techniques

http://www.eucybervote.org/

27-4-2010

45

Zero-knowledge Interval Proofs

• Discrete log setting:

• <g> = {1, g, g2 ,…, gq-1 } for prime q, gq=1

• h  <g> with logg h unknown to anyone

• Problem:

• given a commitment C = gx hr , where x  [0,L) and r

is random.

• prove knowledge of x and r with x  [0,L).

Easy cases

• Given C = gx hr with x  [0,L).

• L=1: prove “C = hr” (x=0)
• Schnorr proof

• L=2: prove “C = hr (x=0) or C = g hr (x=1)”

• OR-composition of 2 Schnorr proofs

• L=2n: commit to bits of x … n times L=2 case

• Using 2n Schnorr proofs in total

27-4-2010

46

Arbitrary L: 2n-1 < L ≤ 2n

• Use intersection [0, L) = [0, 2n) ∩ [L-2n, L)

• AND-composition of two length-2n intervals

• Or, use union [0, L) = [0, 2n-1) U [L-2n-1, L)

• OR-composition of two length-2n-1 intervals

• Either way: about 2*2n = 4n Schnorr proofs

• Optimizations, e.g., if L = 2n-1 + R, for small R

• Best case: R=1, then reduced to 2n Schnorr proofs

• Worst case: still 4n Schnorr proofs

• How to do really better?

General approach: case L = a + b

• For x  [0,L), we have:

x  [0,a) or x-a  [0,b)

• Then we prove recursively:

“C commits in [0,a)” OR “C/ga commits in [0,b)”

27-4-2010

47

General approach: case L = a b

• For x  [0,L), we can write (uniquely):

x = y b + z with y  [0,a), z  [0,b)

• Split C = gx hr into commitment D and E:

D = gy hs with y = [x/b], random s

E = gz ht with z = x mod b, random t

subject to r = s b + t (mod q).

Then C = Db E, and we prove recursively:

“D commits in [0,a)” AND “E commits in [0,b)”

Leads to interesting combinatorics

• Recall: for L=2n we need 2n Schnorr proofs

• For general L of bit length n we get close to

“optimal” of 2n Schnorr proofs

• Exact complexity related to so-called integer

complexity of L

27-4-2010

48

27-4-2010

49

But … FC‟2002 paper

• Better and easier approach possible.
• Helps to split in not-necessarily disjoint intervals.

L=2m: [0, L) = [0, m) U [m, L)

L=2m+1: [0, L) = [0, m+1) U [m, L)

• Given x  [0,L), let b{0,1} indicate in which half
x lies (breaking ties arbitrarily):
• Let B denote commitment to b

• Prove that

− B commits in {0,1}, and

− (recursively) C/Bm commits to [0,(L+1)/2)

• Leads to about 2 log2 L Schnorr proofs

New, optimal solution:

• Assume L=3m for simplicity:

L=3m: [0, L) = [0, m) U [m, 2m) U [2m, L)

• Given x  [0,L), let t{0,1,2} indicate in which
part x lies (breaking ties arbitrarily):
• Let B denote commitment to t

• Prove that

− B commits in {0,1,2}, and

− (recursively) C/Bm commits in [0,L/3)

• Can be extended to work for any L

• Leads to 3 log3 L ≈ 1.89 log2 L Schnorr
proofs

Better than binary method even for L=2n

Optimality:

f(x) = x logx L is minimal

for x = e = 2.71828…

hence take x = 3.

27-4-2010

50

Homomorphic vs. mix-based tallying

• Homorphic: decrypt product of all encrypted

votes

• fast tallying

− only one threshold-decryption

• zeroknowledge proof of validity per vote

− can be costly

• Mix/shuffle based: cascade of verifiable mixes,

followed by decryption of ind. votes

• sequential, relatively slow tallying

− one threshold-decryption per vote

• works for any type of vote

− constant amount of work for voter

What about other solutions?

• Goal:

• minimize work for voter

• fast tallying (i.e. homomorphically)

• Motivation:

• voter‟s device may be constrained

− can do a public key encryption

− cannot generate a sizeable ZK proof of validity

− either too slow

− or not enough space/flexibility to load program for
computing the ZK proof

− or both

27-4-2010

51

Client/server trade-offs

• Damgaard & Jurik (PKC‟02):

• client encrypts index (minimal encoding of a vote)

− plus proof of validity of index (interval proof)

• servers

− convert this into homomorphic encrypted vote

− tally homomorphic votes

• Can be further optimized:

• only a proof of plaintext knowledge

Secure computation from THCs

• Threshold Homomorphic Cryptosystem (THC):

• Distributed Key Generation (DKG): to share private key

• Homomorphic Encryption: under single public key

• Threshold Decryption: joint decryption protocol

• THCs form basic tool for secure multiparty computation,

following [FH93,JJ00,CDN01,DN03,ST04]

27-4-2010

52

“Love Game” for Alice and Bob

Suppose Alice thinks “yes” Suppose Bob thinks “yes”

Alice‟s rule:

for “yes” for “no”

separator: Bob‟s rule:

for “yes” for “no”

Alice and Bob make a random cut and open the deck …

Matching without embarrassments

Match!

yes

yes

no

no

no no

yes yes

These 3 cases

are indistinguishable.

Hence if you put `no‟

you don‟t find out the

other‟s preference.

http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8955.html
http://www.clker.com/clipart-8955.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8955.html
http://www.clker.com/clipart-8955.html
http://www.clker.com/clipart-8955.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html
http://www.clker.com/clipart-8854.html
http://www.clker.com/clipart-8880.html

27-4-2010

53

Boolean AND function

x y x  y

0 0 0

0 1 0

1 0 0

1 1 1

• We have securely computed the AND function x  y

• Approach can be extended to compute any (computable) function securely.

Basic gates & circuits

• Addition, subtraction, multiplication by constant:

E(x), E(y), a, b  E(ax+by) “for free”

• Multiplication, inversion:

E(x), E(y)  E(xy), E(1/x)

• Random bits, values:

„no input‟  E(r)

• Comparison circuits:

E(x0),…,E(xm-1), E(y0),…,E(ym-1)  E(x<y), E(sgn(x-y))

• Arithmetic circuits (addition, multiplication, etc.)

E(x0),…,E(xm-1), E(y0),…,E(ym-1)  E(z0),…,E(zm’-1)

27-4-2010

54

Binary conversion gate Eurocrypt 2006

• Protocol for computing binary representation (bits)

for a given integer value:

E(x)  E(x0) , … , E(xm-1)

• Essential to use Paillier THC

• in general, one cannot use ElGamal THC

− input: E(x) = (gr, hr gx)

− output: E(x0) = (gr, hr gx0), x0 = least significant bit of x

− but x0 is a hard-core bit  would imply computing

DLs (for prime order subgroup of Z*
p and general

cyclic groups)

Protocol for LSB gate: E(x)  E(x0)

• Random bit gate E(r0) 0  r0 < 2

• Random value gate E(r*) 0  r* < 2k

• Threshold-decrypt E(x + r0 + 2r*) to get

y = x + r0 + 2r*

• Output E(x0) = E(y0) E(r0)
1-2y0

• Note: y0 = x0  r0 so

x0 = y0  r0 = y0 + r0  2y0r0

27-4-2010

55

Application to voting

• Voter submits encrypted vote E(x)

• x is number of candidate voted for

• Servers convert to E(x0),…,E(xm-1)

• if x is not in range {0,1,…,2m1} , then servers will notice
this and vote is verifiably invalid

• Suppose number of voters  N

• Compute E(Nxi 2i) = E(1 + xi 2
i (N-1)) “for free”

• Compute E(Nx) using m-1 sec. multiplications

• Tally E(Nx) encryptions homomorphically

Summarizing

• Work for voter is now at “absolute” minimum:

• homomorphic enc. + proof of plaintext knowledge

• improves previous “minimum” of Damgaard&Jurik

• Binary conversion is reasonably efficient for, say, x

up to 10-bits long.

• Can tallying be done more efficiently ?

• For other types of elections ?

27-4-2010

56

Outlook

Future: in 25, 50 years ?

• Instant elections (no influence):
• enitre election in 1 hour; or even in 1 minute.

• “everybody take your voting device”, could be dispensable
electronics – plastic/polymer circuits
− not: the household PC (mom‟s, dad‟s, or the kids‟ PC ?)

− but: dedicated (clean) device

• Peer-to-peer systems:
• all voters take part in voting, storing votes and tallying!!

• national board-room election

• Satellites continuously broadcast contents of the bulletin
board

• But also new methods for voting: do a couple of rounds of an
instant election… rational cryptography

27-4-2010

57

Rational cryptography

• Parties are not just honest or malicious, but have incentives
and a pay-off function.
• like in game-theory, economic elements …

• maybe vote buying can even become a feature!

• New forms of decision making (e.g., beyond social choice
theory with its voting paradoxes)

• Example:
• Helger Lipmaa & Edith ElKind, “Interleaving Cryptography

and Mechanism Design: The Case of Online Auctions”, Fin.
Crypto 2004
− not: given known auction mechanism, implement it

cryptographically

− but: try to use modern cryptography to do a different mechanism,
not possible in “real world” with pencil & paper say

Concluding … (1/3)

• Even when e-voting is not used in the near future, we

need to set the right example

• for industry, organizations, where e-voting is simply

done

• for countries where democracy is not so natural: not to

give them an excuse of using the same bad voting

system

• Paper-based systems not all that good either

27-4-2010

58

International e-voting standards (2/3)

• Standardization at which levels?

• Level of requirements, properties

− listing ballot secrecy, election integrity, non-

coercibility, verifiability can be meaningless (by being

too ambiguous)

• Level of solutions (protocol suites, building blocks)

− e.g. for verifiable tallying

• Level of ballot forms (XML structures)

• Top-down vs. bottom-up

• top-down: but do we know/understand what we want?

• bottom-up: for a given protocol, perform risk analysis

Indirect trust (3/3)

• Transparency:

• not: all voters understand voting system details

• but: voter trust voting system indirectly because

− developed by international group of experts

− in an open, well-documented process

− described in internationally available standards

− on which open, detailed specifications are based

− choice of many, independent implementations by a
whole range of vendors

• In principle, voters, talliers, scrutinizers can
implement their own software

“Elegance is not a dispensable

luxury but a quality that

decides between success

and failure.” E.W. Dijkstra

27-4-2010

59

Author‟s address

Berry Schoenmakers

Coding and Crypto group
Dept. of Mathematics and Computer Science

Technical University of Eindhoven
P.O. Box 513

5600 MB Eindhoven

The Netherlands

berry@win.tue.nl
l.a.m.schoenmakers@tue.nl

http://www.win.tue.nl/~berry/

Threshold cryptography

• Open specification

• But
• multiple implementations

− programmed by different companies, people

− operated by different organizations of various nature
(political parties, consumer organizations,
government, activists, etc.)

− at different geographic locations (countries)

− run of different platforms (Windows, Linux, etc.)

• E.g. an 50 out of 100 scheme (or even different
weights for certain parties)
• if 50 parties conspire they can break ballot secrecy

• or they can break `robustness‟

27-4-2010

60

Multiparty security

• Wrong way:

• involve multiple parties who each protect certain assets,

• or even, multiple parties protecting the same asset

− Risk increases: more parties are involved each of which
can do harm

• Right way:

• split protection of assets among multiple parties s.t. no one
can cheat on their own; only when sufficienctly many parties
cooperate

− Threshold cryptography (uses secret sharing)

