Certificateless Public-Key Cryptography

Mohsen Toorani
Department of Informatics
University of Bergen

Norsk Kryptoseminar November 9, 2011

Public-Key Cryptography (PKC)

- Also known as asymmetric cryptography.
- Each user has two keys: public and private.
- Alice's public key typically used for:
 - encryption to Alice by Bob.
 - verification of Alice's signatures by Bob.
- Alice's private key typically used for:
 - decryption by Alice.
 - signing by Alice.
- No need for Alice and Bob to share a common key before they begin secure communications!
 - Compare with symmetric key cryptography.

Public-Key Cryptography (PKC)

A significant problem in PKC is **verification of the authenticity of public keys**: Users must be assured
that they cannot be fooled into using a false public key!
Solutions for authenticity of public keys:

- 1. Public-Key Infrastructure (PKI)
- 2. Identity-based Cryptography
- 3. Self-Certified Public-Key Cryptography
- 4. Certificate-based Public-Key Cryptography (CB-PKC)
- 5. Certificateless Public-Key Cryptography (CL-PKC)

1. Public-Key Infrastructure (PKI)

- PKI is a system for supporting deployment of PKC
- By the term "traditional PKI" we mean:
 - a combination of hardware, software and policies;
 - needed to deploy and manage certificates;
 - to produce trust in public keys;
 - used in a particular application or set of applications.

Digital Certificates

A **certificate** binds an entity with its public key.

The certificate is issued and signed by a **trusted** Certificate Authority (CA).

Digital signature:

CA signature = certificate hash, encrypted with CA's private key

PKI Components

- Registration Authority (RA)
 - Authenticates individuals/entities, optionally checks for possession of private key matching public key.
 - Passes off result to Certification Authority.
- Certification Authority (CA)
 - Issues certificates: CA issues signatures binding public keys and identities.
 - Relying parties need authentic copy of CA's public key...
- Directory Service
 - Directory of public keys/certificates.
- Revocation Service
 - May involve distribution of Certificate Revocation List (CRL) or on-line certificate status checking (OCSP).

Using PKI

Some PKI Problems

- Acute where consumers/end-user populations (humans) are involved.
- Legal and regulatory
- Interoperability and standards
- Costs and business models
- Some technical issues:
 - How is revocation to be handled?
 - How should the CA be designed and run?
 - How should keys and algorithms be managed?

Certificates and their management are the source of some problems.

2. Identity-based Cryptography

- Public keys derived directly from system identities (e-mail address, mobile number, IP address, etc).
- The first idea due to Shamir (1984) but it was just an ID-based signature scheme.
- Construction of practical and secure ID-based encryption scheme was an open problem until 2001 when Boneh and Franklin (proposed in Crypto'01):
 - A Pairing-based IBE scheme, practical and provably secure.

2. Identity-based Cryptography

email encrypted using public key:

"alice@gmail.com"

2. Identity-based Cryptography (in Reality)

2. Advantages of ID-PKC

Certificate-free

No production, checking, management or distribution of certificates.

Directory-less

- Bob can encrypt for Alice without looking-up Alice's public key first.
- Alice need not have her private key when she receives Bob's encryption.

Automatic revocation

- Can extend identifier to include a validity period.
- Alice's private key becomes useless at end of each period.
- Alice needs to obtain private key for current period in order to decrypt new messages.
- No need for CRLs or OCSP.

support for key recovery

- TA can calculate private key for any user.
- May be needed e.g. when user leaves the organisation.
- Enables applications like content scanning of e-mail at the server.

2. Disadvantages of ID-PKC

- Effect of Catastrophic Compromise: What is the cost of compromise of the master secret?
 - All past encrypted messages are exposed & all old signatures become worthless.
 - Potentially higher than cost of compromise of CA's signing key in PKI: CA in PKI
 can re-issue all certificates under new signing key without compromising clients'
 private keys.

Key Escrow

- TA can calculate all the private keys in the system.
- We need to trust TA not to abuse this privilege.
- PKI is more flexible in this respect.

Inability to Provide Non-repudiation

- Another consequence of key escrow.
- TA could forge signatures if an ID-based signature were adopted.
 - So need to trust TA not to do that.
- EU electronic signature legislation requires private key to be under "sole control" of signer in order for signatures to be fully recognised.
 - So It is incompatible with some legislative regimes.

3. Self-Certified PKC

- Introduced by Girault (Crypto'91) to reduce storage and computation costs:
 - No key escrow
 - No need for hash functions in computing public keys
 - No need for a secure channel between CA and user.
- Users are associated with a 3-tuple (ID, s, P): (User's identity, User-chosen private key, the public key that doubles as a certificate).
- CA issues a certificate on ID, which is then used as the public key. (different from traditional PKI, where users have separate certificate validating their public keys.
- P cannot be immediately derived from ID (varies from IDbased schemes)

4. Certificate-based Public-Key Cryptography (CB-PKC)

- Introduced by Gentry (Eurocrypt 2003).
- Simplifies revocation in traditional PKIs.
- Alice's private key consists of two components:
 - The private part S_A of a "traditional" key pair (S_A, P_A) .
 - A time-dependent certificate S_{CA}(t) pushed to Alice on a regular basis by the CA, so long as Alice not revoked.
- Bob can compute a matching public key using only the CA's public parameters, time t and Alice's public component P_A
- Bob is assured that Alice can only decrypt if the CA has issued certificate S_{CA}(t) for the current time interval t.

4. Certificate-based PKC (CB-PKC)

5. Certificateless Public-Key Cryptography (CL-PKC)

- Introduced by Al-Riyami and Paterson (Asiacrypt 2003).
 - A thriving sub-area of ID-PKC.
- Design objective:
 - Remove the key escrow problem of ID-PKC without introducing certificates.

CL-PKC

CL-PKC:

- A paradigm for generating trust in public keys.
- Lies midway between traditional PKI and ID-PKC in terms of trust model and functionality

Why CL-PKC?

- No certificates used (PKI)
 - Low storage and communication bandwidth
 - No need to verify certificates (certificate chains)
 - Higher degree of privacy
- Public keys are always valid
 - No need for CRLs
- No key escrow (ID-PKC)
 - TA cannot recover session keys
 - TA cannot forge signatures

CL-PKC

CL-PKE

CL-PKE

- Each user generates its own public key from a randomly generated "secret value".
- KGC provides a partial private key for a user's identity.
- Encryption requires the user's public key and the user's identity.
- Decryption requires a private key based on the user's secret value and partial private key.

CL-PKE Features

- No key escrow.
 - User-generated secret component x_A protects against eavesdropping TA.
- No explicit certification of public keys required.
 - Adversary does not know partial private key PPK_A so cannot calculate the full private key.
 - Should assume that TA is not engaged in active adversarial behavior.
- A complete suite of certificateless cryptographic primitives is available:
 - Digital Signatures
 - Key Exchange (KE) and Authenticated-Key Exchange (AKE) protocols
 - Hierarchical schemes
 - Signcryption

CL-PKC Drawbacks

- Is not purely identity-based.
 - Identifier and public key needed for encryption.
- Secure channel needed for delivery of partial private keys – as in ID-PKC.
- Revocation is a potential problem
- Does not attain full security of traditional PKI, since TA might cheat.
 - But TA must mount an active attack for replacing public keys (in ID-PKC, it could be done by a passive attack).

Al-Riyami & Paterson's Certificateless AKE (2003)

KGC's master private key: s

KGC's master public key $P_{KGC} = sP$

Public parameters: (G₁,G_T, e, q, P, P_{KGC}, h, h')

Alice's secret value: x_A

 $Q_A = h(ID_A)$

Alice's partial private key (issued by KGC): $D_A = sQ_A$

Alice's Public key: $(X_A, Y_A)=(x_i P, x_i P_{KGC})$

$$K_A = e(Q_B, Y_B)^a e(S_A, T_B) =$$
 $e(Q_B, x_B SP)^a e(x_A SQ_A, bP) =$
 $e(x_B SQ_B, aP) e(Q_A, x_A SP)^b =$
 $e(S_B, T_A) e(Q_A, Y_A)^b = K_B$

Another Certificateless AKE Protocol

Another Certificateless AKE Protocol (with multiple KGC)

A Certificateless AKE Protocol without bilinear pairings (He et. al, 2011)

Generate a random number a; $M_1 = \{ID_A, T_A\}$ Generate a random number b; $T_B = b \cdot P$; $M_2 = \{ID_B, T_B\}$ $K_{AB}^1 = (x_A + s_A)T_B + a \cdot (P_B + R_B + H_1(ID_B, R_B, P_B)P_{yub});$ $K_{AB}^2 = a \cdot T_B;$ $K_{BA}^2 = a \cdot T_A;$ $Sk = H_2(ID_A \parallel ID_B \parallel T_A \parallel T_B \parallel K_{AB}^1 \parallel K_{AB}^2)$ $Sk = H_2(ID_A \parallel ID_B \parallel T_A \parallel T_B \parallel K_{BA}^1 \parallel K_{BA}^2)$

Strongly Secure Certificateless Encryption

(Dent et al., PKC'08)

- ID and pk are the user's identity and public key.
- mpk₁ and mpk₂ are part of the system parameters
- Decryption process uses the certificateless encryption scheme

One passively secure certificateless encryption scheme: CETwo instances of a passively secure public-key encryption schemes: E

Questions?

