Improvements on Circuit Lattices

Igor Semaev University of Bergen Norway

Norsk Kryptoseminar, 10 November 2011 (also Dagstuhl Seminar, September 2011)

Introduction. Outline

- Motivation
- Definitions
- Basic Algorithms

(ロ)、(型)、(E)、(E)、 E) の(の)

Motivation

- One way function $x \to f(x)$
- E.g. $x \to a^x \mod p$
- ► M plain-text, K - key, E_K(M) cipher-text in DES(AES):

$$K \to E_K(M)$$

Still one-way

Motivation

Compute with low number of small gates

$$f(x_1, x_2, x_3, x_4) = F(g_1(x_1, x_2), g_2(x_2, x_3), g_3(x_3, x_4))$$

• Invert: solve
$$f(x) = y$$
 in x

Simplify: introduce new variables

$$f(x_1, x_2, x_3, x_4) = y \Leftrightarrow \begin{array}{c} g_1(x_1, x_2) = y_1 \\ g_2(x_2, x_3) = y_2 \\ g_3(x_3, x_4) = y_3 \\ F(y_1, y_2, y_3) = y \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

3-sparse equations system

DES and TripleDES equations

- 64-bit plain-text, cipher-text, convenient to write variables
- 64-bit internal state blocks and 56(112)-bit key
- Equations from S-boxes(6-bit \rightarrow 4-bit)

$$Y_4\oplus Z_4=S(X_6\oplus K_6)$$

- ▶ 20 variables(20-sparse), 2¹⁶ solutions each
- DES: 632 variables, 128 equations
- TDES: 1712 variables, 384 equations

Zakrevskij-Raddum representation

• $f_i(X_i) = 0 \Leftrightarrow$ solutions V_i in variables $X_i \Leftrightarrow E_i = (X_i, V_i)$

$$\begin{array}{cccc} & x_1 & x_2 & x_3 \\ \hline x_1 x_2 + x_3 \equiv 0 \mod 2 \Leftrightarrow & 0 & 1 & 0 \\ & 1 & 0 & 0 \\ & 1 & 1 & 1 \end{array}$$

Solve with:

- Gluing(enlarge equations by combining)
- Guess variable values
- Pairwise Agreeing(propagation, decision)

Local Reduction (Pairwise Agreeing)

x_1	<i>x</i> ₂	Х3		x_1	<i>x</i> ₂	<i>X</i> 4
0	0	1	-	0	0	0
0	0	0		1	0	1
0	1	0		1	1	0
1	1	1		1	1	1

- Common variables {x₁, x₂}
- Projections on $\{x_1, x_2\}$:
- 00,01,11 and 00,10,11
- Remove vectors with projection not in the projections of another list

Due to [Zakrevskij-Vasilkova,00] and [Raddum,04]

Agreeing Algorithm

- Repeat:
- ▶ Find *E_i* and *E_j* which disagree
- ▶ Remove some local solutions in *E_i* or *E_j* and make them agree.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Related Algorithms Running Time(q=2)

n *l*-sparse Boolean equations in n variables

/ =	3	4	5	6
the worst case	1.324 ⁿ	1.474 ⁿ	1.569 ⁿ	1.637 ⁿ
expectation[Semaev,10]	1.029 ⁿ	1.107 ⁿ	1.182 ⁿ	1.239 ⁿ

- Worst and average cases of the problem are excitingly different
- A software implementation is comparable with SAT-solvers in speed[Schilling-Raddum,10]

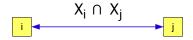
Circuit Lattices. Contribution Outline

Equation Graph simplification, New versus [Semaev,WCC'09]

- A faster agreeing [Raddum-Semaev,07]
- Circuit Lattices, New versus [WCC'09]
- Circuit Lattice for TripleDES

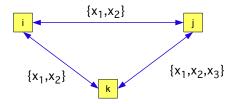
Equation Graph and Pairwise Agreeing

• Connect
$$E_i = (X_i, V_i)$$
 and $E_j = (X_j, V_j)$ by



- if $X_i \cap X_j \neq \emptyset$
- Pairwise Agreeing:
- Learn $X_i \cap X_j \neq a$ from E_i . Expand to E_j
- or vice versa

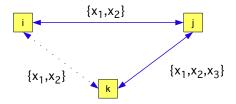
Remove some edges and keep Algorithm's output



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

6 connections(arcs) initially

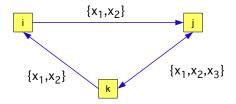
Remove some edges and keep Algorithm's output



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

4 connections(arcs) as in WCC'09

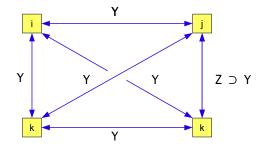
Remove some edges and keep Algorithm's output



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

4 connections(arcs) now

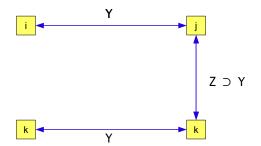
Remove some edges and keep Algorithm's output



▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

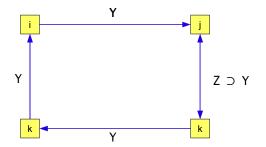
12 connections(arcs) initially

Remove some edges and keep Algorithm's output



6 connections(arcs) as in WCC'09

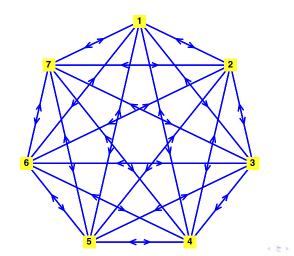
Remove some edges and keep Algorithm's output



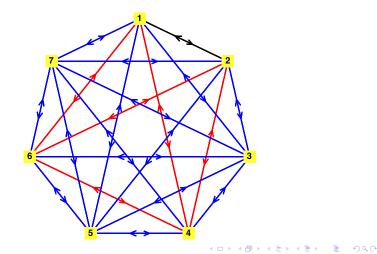
▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

▶ 5 connections(arcs) now

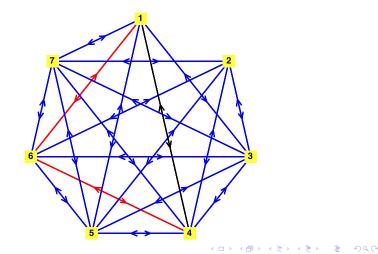
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



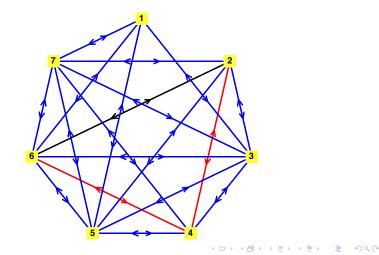
 $\{x_1, \mathbf{x_2}, x_4, x_6\}, \{\mathbf{x_2}, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



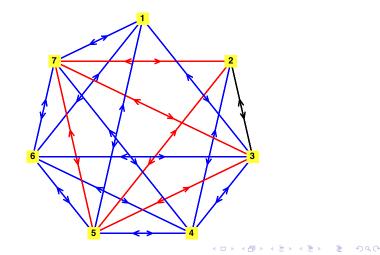
 $\{x_1, \mathbf{x_2}, \mathbf{x_4}, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{\mathbf{x_2}, \mathbf{x_4}, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



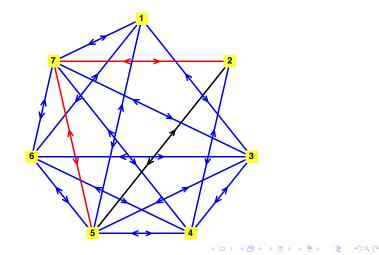
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \{x_1, x_2, x_4, x_5, x_7\}, \{x_2, x_4, x_5, x_7\}, \{x_3, x_4, x_6\}, \{x_4, x_5, x_7\}, \{x_4, x_5, x_7\}, \{x_4, x_5, x_7\}, \{x_5, x_7\}, \{x_7, x_8, x_8\}, \{x_7, x_8, x_8\}, \{x_8, x_8\}, \{x$ $\{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



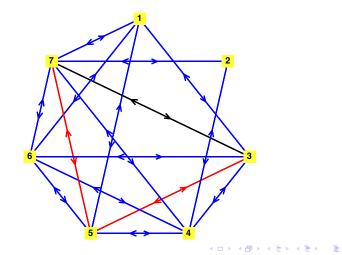
 ${x_1, x_2, x_4, x_6}, {x_2, \mathbf{x_3}, x_5, x_7}, {x_1, \mathbf{x_3}, x_4, x_6}, {x_2, x_4, x_5, x_7},$ $\{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



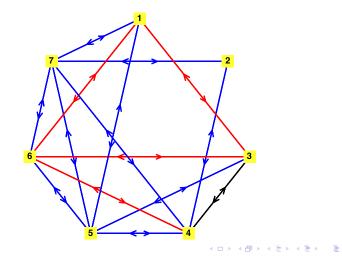
 $\{x_1, x_2, x_4, x_6\}, \{x_2, \mathbf{x_3}, \mathbf{x_5}, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \{x_3, x_4, x_6\}, \{x_3, x_4, x_6\}, \{x_4, x_5, x_7\}, \{x_4, x_5, x_7\}, \{x_4, x_5, x_7\}, \{x_5, x_7\}, \{x_5, x_7\}, \{x_5, x_7\}, \{x_5, x_7\}, \{x_7, x_8, x_9\}, \{x_7, x_8, x_9\}, \{x_8, x_9\},$ $\{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



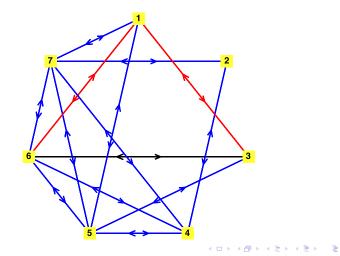
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{\mathbf{x_1}, \mathbf{x_3}, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{\mathbf{x_1}, \mathbf{x_3}, x_5, x_7\}$



 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, \mathbf{x_4}, x_6\}, \{x_2, \mathbf{x_4}, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$

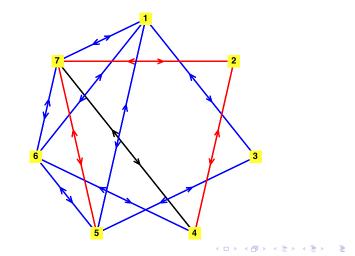


 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, \mathbf{x_4}, \mathbf{x_6}\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, \mathbf{x_4}, \mathbf{x_6}, x_7\}, \{x_1, x_3, x_5, x_7\}$

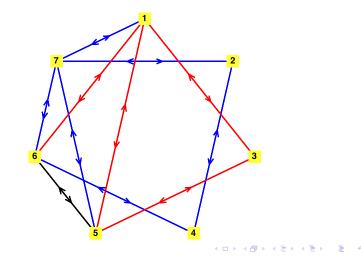


 $\mathcal{O} \mathcal{O} \mathcal{O}$

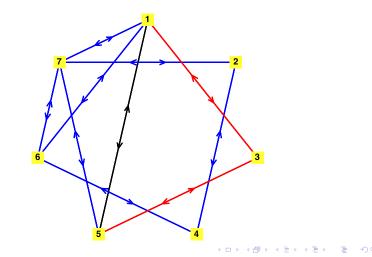
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, \mathbf{x_5}, \mathbf{x_7}\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, \mathbf{x_5}, \mathbf{x_7}\}$



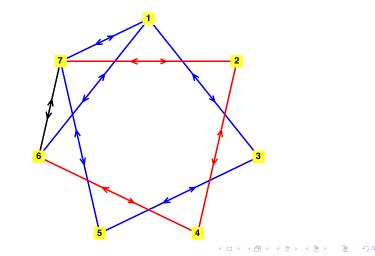
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, \mathbf{x_6}\}, \{x_2, x_4, \mathbf{x_6}, x_7\}, \{x_1, x_3, x_5, x_7\}$



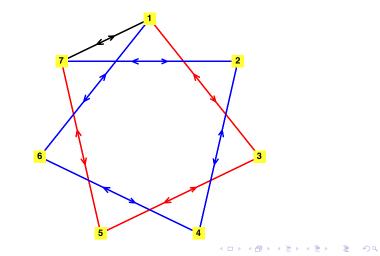
 $\{ \mathbf{x_1}, x_2, x_4, \mathbf{x_6} \}, \{ x_2, x_3, x_5, x_7 \}, \{ x_1, x_3, x_4, x_6 \}, \{ x_2, x_4, x_5, x_7 \}, \\ \{ \mathbf{x_1}, x_3, x_5, \mathbf{x_6} \}, \{ x_2, x_4, x_6, x_7 \}, \{ x_1, x_3, x_5, x_7 \}$



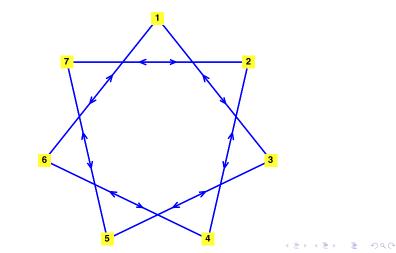
 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, \mathbf{x_7}\}, \{x_1, x_3, x_5, \mathbf{x_7}\}$



 $\{ \mathbf{x}_1, x_2, x_4, x_6 \}, \{ x_2, x_3, x_5, x_7 \}, \{ x_1, x_3, x_4, x_6 \}, \{ x_2, x_4, x_5, x_7 \}, \\ \{ x_1, x_3, x_5, x_6 \}, \{ x_2, x_4, x_6, x_7 \}, \{ \mathbf{x}_1, x_3, x_5, x_7 \}$

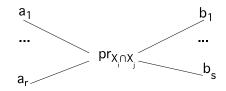


 $\{x_1, x_2, x_4, x_6\}, \{x_2, x_3, x_5, x_7\}, \{x_1, x_3, x_4, x_6\}, \{x_2, x_4, x_5, x_7\}, \\ \{x_1, x_3, x_5, x_6\}, \{x_2, x_4, x_6, x_7\}, \{x_1, x_3, x_5, x_7\}$



Faster Pairwise Agreeing

- ► $E_i \rightarrow E_j$
- ▶ a_1, \ldots, a_r and b_1, \ldots, b_s local solutions to E_i and E_j
- with the same projection to $X_i \cap X_j$



Pre-compute all such tuples (a₁,..., a_r; b₁,..., b_s)

Faster Pairwise Agreeing

• Notation: $a_i \neq$ part of a global solution \Rightarrow mark \bar{a}_i

- $(a_1, \ldots, a_r; b_1, \ldots, b_s)$ equivalent to
- $\bar{a_1}, \ldots, \bar{a_r} \Rightarrow \bar{b_1}, \ldots, \bar{b_s}$
- Solving the system:
- Introduce a guess \equiv mark some of a_i
- Expand marking through the imlications

Example

Equations by local solutions:

	x ₁	<i>x</i> ₂	<i>x</i> 3			V.	ν.			<i>x</i> ₂	<i>x</i> 3	<i>X</i> 4
a_1	0	0	1	-	h	~1	 	-	<i>c</i> ₁	0	1	1
a ₂	0	1	1	,	D_1	1	1	,	<i>c</i> ₂	1	0	1
a ₃	1	1	1 1 0		D2	T	x ₄ 1, 0		Сз	1	1	0

Tuples

$$(a_1, a_2; b_1), (b_1; a_1, a_2), (a_3, b_2), (b_2; a_3), (b_1; c_2), (c_2; b_1)$$

 $(c_1, c_3; b_2), (b_2; c_1, c_3), (a_1; c_1), (c_1; a_1),$
 $(a_2; c_3), (c_2; a_3)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example

- Assume $x_4 = 0 \Rightarrow b_1$ should be marked(wrong local solution)
- Marking expansion

$$(b_1; a_1, a_2) \longrightarrow (a_1; c_1)$$

$$(a_2; c_3) \longrightarrow (c_1, c_3; b_2) \longrightarrow (b_2; a_3) \longrightarrow (a_3; c_2) \longrightarrow (c_2; b_1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ All instances(b₂ at early stage) got marked
- The system is inconsistent for $x_4 = 0$

Circuit Lattice (Basic Construction)

- Circuit Lattice is a combination of switches and wires
- Two types of switches:

- 1-Switch controls vertical circuit by the horizontal
- 2-Switch controls horizontal circuit by the vertical

Local solution \Leftrightarrow Horizontal circuit Local solution wrong \Leftrightarrow Potential in the circuit

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

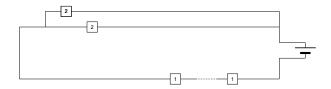
2-switch controls the circuit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Several 2-switches may control the circuit

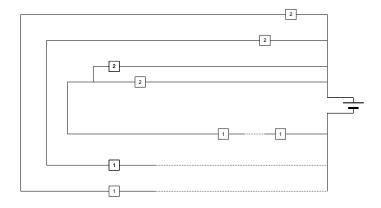
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

1-switches control some vertical circuits



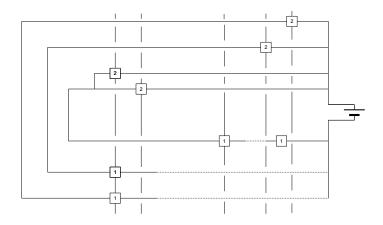
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Many horizontal circuits



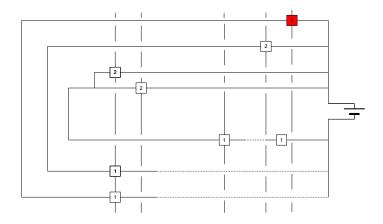
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

 $\mathsf{Tuple} \Leftrightarrow \mathsf{Vertical}\ \mathsf{circuit}$

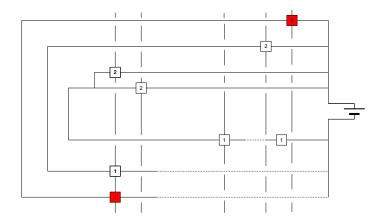


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Inducing potential in some circuits

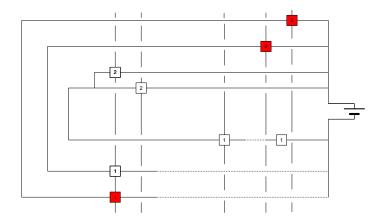


Expands potential to new circuits



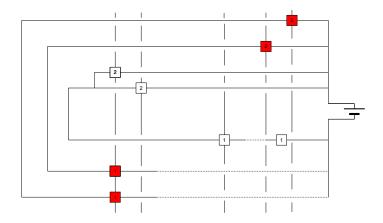
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Expands potential to new circuits

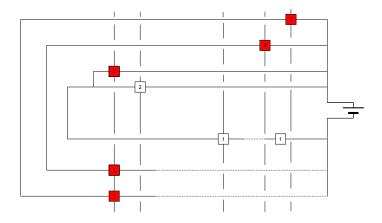


◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Expands potential to new circuits

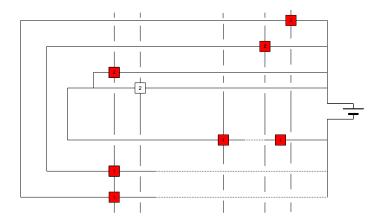


Expands potential to new circuits



◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Expands potential to new circuits

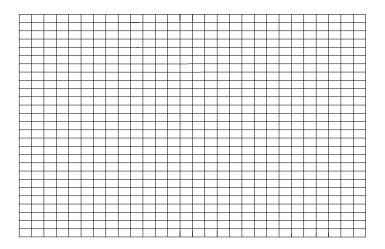


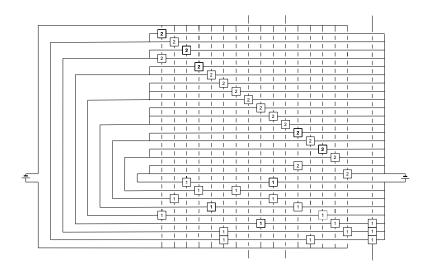
Introduce the guess

- Generally, no voltage in initial circuit lattice
- Assume E_i depends on x_j
- a_1, \ldots, a_2 solutions to E_i , where $x_j = 0$
- ▶ Add 2-Switch to each *a*₁,..., *a*₂, connect them
- Guessing $x_j = 0$ is inducing voltage in new circuit

- Similarly, guessing $x_j = 1$
- s-variable guess 2s new vertical circuits

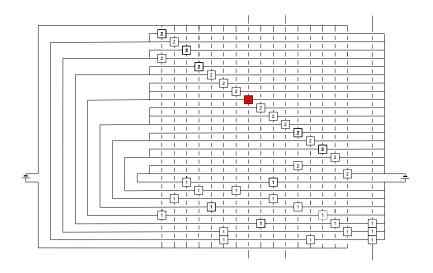
Grid Lattice

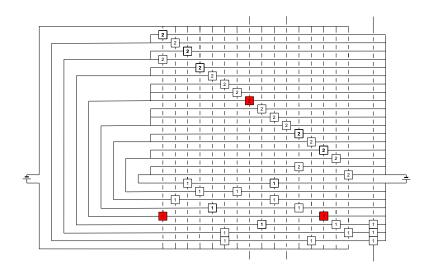




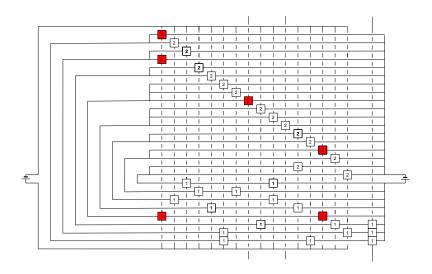
▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで

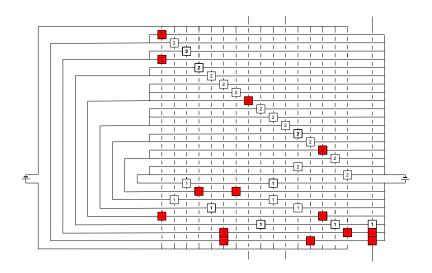
Exemplary Circuit Lattice. Introduce guess $x_4 = 0$

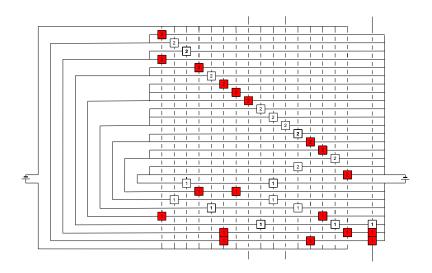


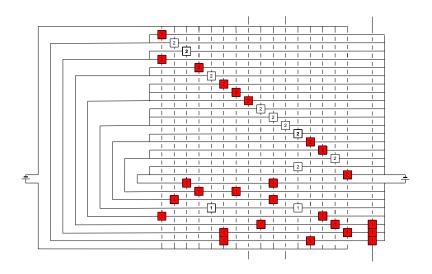


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?



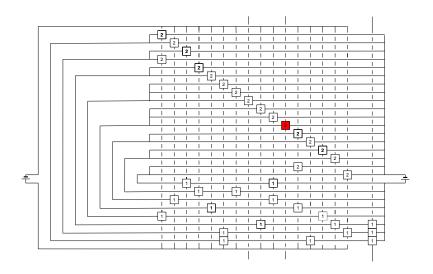




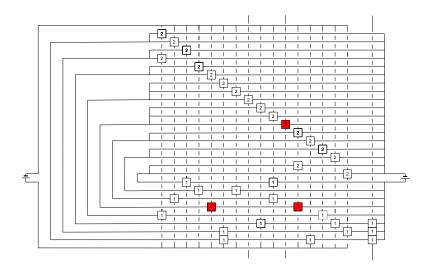


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

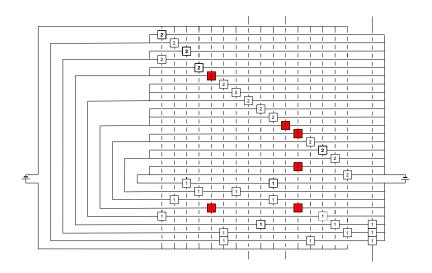
Exemplary Circuit Lattice. Introduce guess $x_4 = 1$



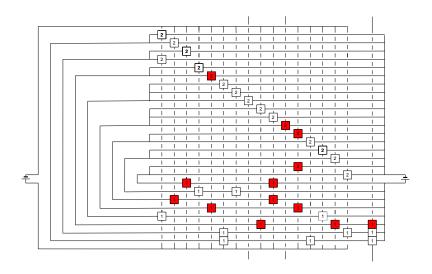
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで



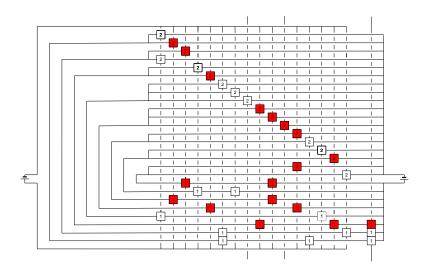
▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで



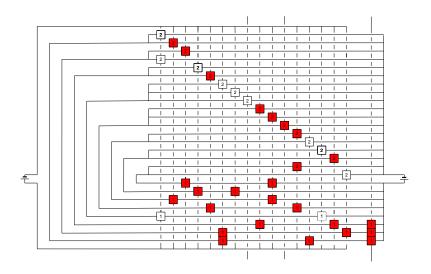
▲□▶ ▲□▶ ▲注▶ ▲注▶ 注目 のへで



▲□▶ ▲□▶ ★ 三▶ ★ 三▶ - 三 - のへで



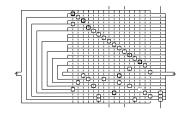
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



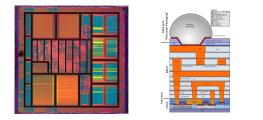
TripleDES system parameters

- 1712 variables, 384 equations
- 3929 maximal edges
- 71320 tuples
- 1.1×10^9 switches
- $480 = 2 \times 128 + 2 \times 112$ input contacts
- The device doesn't require synchronization

Circuit Lattice, as in WCC'09 topologically. Not much wiring intersection now. Implementable with two layers on a crystal.



Common Integrated Circuit, about 10 semiconductor layers



★ 3 → 3

(日)、

Implement on Modern Semiconductor Crystals for brute force?

- Transistor works as a switch
- ▶ 1.7×10^9 transistors on Dual-Core Itanium2 processor
- ▶ Circuit Lattice speed ≤ 2×(number of rounds) transistor turns

- $2 \times 48 + 2$ turns for TripleDES
- One transistor turn, say 100GHz(1000GHz reported)
- ▶ 1GHz key-rejecting rate when using for brute force
- Reported(2006) 0.13GHz per chip with implementing encryption

Conclusions

- WCC'09 design was improved
- Equation solving is shown as voltage expansion through a lattice of switches

- Our approach seems more flexible than implementing encryption as enables handling any equation system representing cipher
- Applications to DES, TripleDES are discussed