Analysis of Trivium using Compressed Right Hand Side Equations

Thorsten Schilling, Håvard Raddum

Selmer Center, University of Bergen

November 9, 2011

Motivation

- Algebraic cryptanalysis
 - Cipher constraints as equation system
 - Known information \rightarrow constants
 - Secret information \rightarrow variables
- \bullet Solve equation system \rightarrow obtain secret information
- NP-hard problem
- "There are no shortcuts." (M. Albrecht)

Motivation

- Algebraic cryptanalysis
 - Cipher constraints as equation system
 - Known information \rightarrow constants
 - Secret information \rightarrow variables
- $\bullet\,$ Solve equation system $\to\,$ obtain secret information
- NP-hard problem
- "There are no shortcuts." (M. Albrecht)

Techniques

By consumed resource (time-out vs. space-out)

- Time
 - Guessing
 - SAT-solving (DPLL)
 - Guessing-/Agreeing (Raddum/Semaev)
 - Contraint programming etc.
- Space
 - Gröbner basis algorithms
 - Gluing-/Agreeing (Raddum/Semaev)
 - Multiple Right Hand Side Equations (Raddum)
 - Compressed Right Hand Side Equations

MRHS Equations

- Alternative, space saving representation
- Separate linearity from non-linearity

$$\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Join equations: Gluing
- Problem: space-out by right hand side

Binary Decision Diagrams (BDDs)

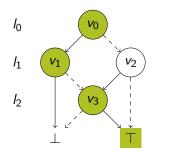
- Graphstructure representing large sets of binary vectors
- Canonical
- Binary operations on sets in compressed form
- Mostly used in design/verification systems
- Use in cryptanalysis
 - LFSR results (Krause, 2002)
 - Grain results (Stegemann, 2007)



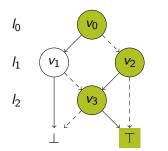
- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths



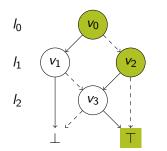
- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths



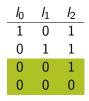
- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths

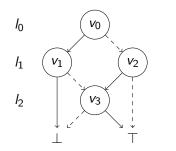


- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths



- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths





- Directed acyclic graph
- 0/1-edges
- \top/\bot nodes
- Fixed variable order I_0, I_1, I_2
- Vectors as accepting paths

BDD properties

- Potentially space efficient representation
- Depending on variable ordering
- Finding optimal ordering NP-hard
- Very easy to count number of satisfying paths in BDD
- Boolean operations on BDDs
- Size of a BDD A: $\mathcal{B}(A)$, dominated by number of vertices
- Upper bound $\mathcal{B}(A \wedge B) \leq \mathcal{B}(A)\mathcal{B}(B)$

BDD properties

- Potentially space efficient representation
- Depending on variable ordering
- Finding optimal ordering NP-hard
- Very easy to count number of satisfying paths in BDD
- Boolean operations on BDDs
- Size of a BDD A: $\mathcal{B}(A)$, dominated by number of vertices
- Upper bound $\mathcal{B}(A \wedge B) \leq \mathcal{B}(A)\mathcal{B}(B)$

Typical Trivium equation:

$$x_1 \cdot x_2 + x_3 + x_4 + x_5 = x_6$$

Typical Trivium equation:

$$\begin{aligned} x_1 \cdot x_2 + x_3 + x_4 + x_5 &= x_6 \\ \left(\begin{array}{rrrrr} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{array}\right) \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} &= \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

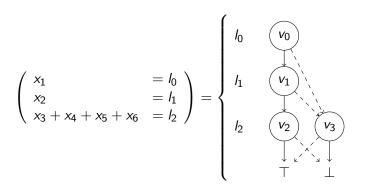
Typical Trivium equation:

 $x_1 \cdot x_2 + x_3 + x_4 + x_5 = x_6$

$$\begin{pmatrix} x_1 & = l_0 \\ x_2 & = l_1 \\ x_3 + x_4 + x_5 + x_6 & = l_2 \end{pmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Typical Trivium equation:

 $x_1 \cdot x_2 + x_3 + x_4 + x_5 = x_6$



CRHS

CRHS properties

- Keep separation between linearity and non-linearity
- Conjunction analogous to MRHS-gluing without final reduction step

$$\left\{ \begin{bmatrix} C_1 \end{bmatrix} x = \mathcal{D}_1 \right\} \circ \left\{ \begin{bmatrix} C_2 \end{bmatrix} x = \mathcal{D}_2 \right\} = \\ \left\{ \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} x = \mathcal{D}_1 \land \mathcal{D}_2 \end{array} \right\}$$

- Operations in compressed form
- Problem after some gluings: "BDD oblivious to linear dependencies in left hand side"

Trivium, Trivium-N

- One of final eStream Candidates
- Still incredibly simple in design, still not broken
- Reduced version Bivium not *convincing* \rightarrow different structure in equation system (too easy?)
- Trivium-N
 - Trivium with N-bit state
 - Feedback very close to original Trivium
 - Equation system very similar to Trivium-288 (full)

Trivium, Trivium-N

- One of final eStream Candidates
- Still incredibly simple in design, still not broken
- Reduced version Bivium not *convincing* → different structure in equation system (too easy?)
- Trivium-N
 - Trivium with N-bit state
 - Feedback very close to original Trivium
 - Equation system very similar to Trivium-288 (full)

Results

Results Trivium-N

Ν	п	k	B	lc	Sol.	Mem.
35	85	173	2 ^{18.86}	88	2 ^{85.67}	87
40	94	191	2 ^{20.57}	97	2 ^{93.77}	182
45	106	215	2 ^{21.68}	109	2 ^{106.60}	358
50	115	233	2 ^{21.15}	118	2 ^{115.60}	258
55	127	257	2 ^{21.55}	130	2 ^{127.60}	329
60	138	282	2 ^{22.34}	144	2 ^{140.35}	560
65	148	299	2 ^{22.66}	151	2 ^{148.60}	687
70	160	323	2 ^{22.42}	163	2 ^{160.49}	588
75	171	349	2 ^{22.78}	178	2 ^{173.83}	742

Results Full Trivium

- Managed to glue all 666 equations into two CRHSs C_1, C_2 :
 - $\mathcal{B}(C_1) = 2^{22.9}$ • $\mathcal{B}(C_2) = 2^{24.8}$
- By upper bound $\Rightarrow \mathcal{B}(\mathit{C}_1 \wedge \mathit{C}_2) \leq 2^{47.7} << 2^{80}$

Open Questions

- How do we find efficiently path in BDD which satisfies all linear dependencies in left hand side.
- Problem not necessarily hard:
 - CRHS-Gluing still exponential problem but possible to do
 - There should be just one path which satisfies all constraints
 - Do we have to expect another exponential problem?

Summary

- New technique for solving equation systems in algebraic cryptanalysis
- Processing of equation system possible than with earlier approaches
- Technique able to handle huge number of solutions and count them
- Graphtheoretic problem: Find only path in DAG which satisfies some linear constraints

