
A survey on construction of Boolean function with
optimum algebraic immunity (AI)

Chunlei Li

Selmer Center, Department of Informatics
University of Bergen

November 10, 2011

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 1 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 2 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 3 / 35

Stream Ciphers

Stream cipher has 3 elements: state/ update function/ filter
State initialised with secret key K, keystream XORed with plaintext.

Only few operations: Fast and very low HW requirements.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 4 / 35

Linear Feedback Shift Register (LFSR)

State has l bits

Linear update: new state=L(state)

Advantages: Very efficient, good statistical properties
Limitations: Easily predicted, requires good filter...

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 5 / 35

Boolean Function

Boolean function f with n input variables

Computation in finite field: x⊕ x = 0 and x2 = x.

A toy example: f(x1, x2, x3) = x1 ⊕ x2 ⊕ x1x3

x1x2x3 f(x) x1x2x3 f(x)

000 0 100 1
001 0 101 0
010 1 110 0
011 1 111 1

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 6 / 35

Filter Generator

Combination of LFSR and Boolean function → filter generator:

State of l bits, initialized with secret key K (Example: l = 128 bits)

Filter takes n bits of state (Example: n = 20 bits)

Output of keystream bit zt = f(Lt(K))

Related designs: Combiner, clock-controlled generators,...

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 7 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 8 / 35

Basics for Boolean functions (BF)

The Algebraic Normal Form (ANF) for f : Fn2 → F2:

f(x1, · · · , xn) =
∑

I⊆{1,...,n}

aI

(∏
i∈I

xi

)
, aI ∈ F2.

The algebraic degree: deg(f) is the degree of the ANF.
Affine functions: degree ≤ 1 with the form

a(x) = a1 x1 + · · ·+ an xn + a0.

The support set of a function: supp(f) = {x ∈ F2
n | f(x) = 1}.

The Hamming weight of a function f : wt(f) = #supp(f), f is
balanced if wt(f) = 2n−1.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 9 / 35

Basics for Boolean functions (BF)

The Hamming distance between two functions:

dH(f, g) = wt(f + g) = #{x ∈ Fn2 | f(x) 6= g(x)}.

The nonlinearity of f is the minimum Hamming distance to affine
functions.

nl(f) = min{d(f, l) : deg(l(x)) ≤ 1} = 2n−1 − 1

2
max
a∈F2

n
|̂f(a)|,

where the Discrete Fourier Transform:

f̂(a) =
∑
x∈F2

n

(−1)f(x)+a·x.

The nonlinearity is upper bounded by 2n−1 − 2n/2−1 and must be close to
this maximum to prevent the system from linear and correlation attacks.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 10 / 35

Important criteria for BF design

To resist against known attacks, an n-variable BF used in stream ciphers
should:

be balanced

have high algebraic degree close to n

have large nonlinearity close to 2n−1 − 2n/2−1

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 11 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 12 / 35

Algebraic Equations

Any stream cipher is defined by a system of algebraic equations.
A solution of this system gives the secret key.

Our system of equations:

f(K) = z0

f(L(K)) = z1

f(L2(K)) = z2

...

Example:

k1 ⊕ k2 ⊕ k1k2 = 1
k3 ⊕ k2k3 = 0

k2 ⊕ k1k2 ⊕ k2k3 = 0
...

Properties: l unknowns, many equations, nonlinear (degree k)
Solution: How to solve this system?

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 13 / 35

Linearization

Linearization: Introduce new variables for each monomials.

Example

1 Equation: k1 ⊕ k2 ⊕ k1k2 = 1

2 New variables: v1 = k1, v2 = k2, v3 = k1k2
3 New equation: v1 ⊕ v2 ⊕ v3 = 1

#monomials ≤
(
l

0

)
+

(
l

1

)
+ · · ·+

(
l

k

)
≈
(
l

k

)

Complexity for solving this linear system with
(
l
k

)
variables:

Data complexity is
(
l
k

)
keystream bits l : size of state

Time complexity is
(
l
k

)3
for Gaussian elimination k : degree of f

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 14 / 35

Algebraic Attacks

Problem: Simple linearization is not efficient
Idea: Reduce degree of equations → algebraic attacks
How?

1 find g of degree d ≤ k, such that f · g = 0, or

2 find g of degree d ≤ k, such that (f + 1) · g = 0

Example 1:

f(x) = x1x2x3x4x5
g(x) = x1 + x4

}
⇒ fg = 0

Example 2:

f(x) = x1x2x3x4 + 1
g(x) = x1 + x2

}
⇒ fg = g

And then? New equation of degree d from zt = f(Lt(K)):

1 if zt = 1 and f · g = 0, then g(Lt(k)) = 0, or

2 if zt = 0 and (f + 1) · g = 0, then g(Lt(k)) = 0

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 15 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 16 / 35

New criterion: Algebraic Immunity

Algebraic Immunity (AI)

Given f , find g of minimum degree d, such that f · g = 0 or
(f + 1) · g = 0. The algebraic immunity of f is d.

System of equations of degree d.

Complexity for linearization

Data complexity is
(
l
d

)
l : size of state

Time complexity is
(
l
d

)3
d : AI(f)

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 17 / 35

Computation of AI

AI(f) must be large to resist against Algebraic Attacks.

Upper bound?

we have AI(f) ≤ deg(f) since f + 1 itself is an annihilator of f

Courtois-Meier (2003): AI(f) ≤
⌈
n
2

⌉
.

In practical situation, AI(f) must be greater than or equal to 7.
The best known algorithm for computing AI of f can be efficient only
when n ≤ 20. Besides, randomly generating Boolean functions with high
algebraic immunity in 20 variables is too slow.

We need theoretical construction for BF with high AI.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 18 / 35

More requirements?...

Remark: a high value of AI(f) is not sufficient:

If g of small degree and h, of degree not too large, exist such that
fg = h, then a fast algebraic attack is possible.

Note that if fg = h and h 6= 0, then the degree of h is at least
AI(f). Hence, a high AI is a necessary condition for a resistance to
fast algebraic attacks as well.

A very efficient algebraic-like attack on the filter generator was found
by Sondre Rønjom and Tor Helleseth. Its time complexity is roughly

O(D), where D =
∑deg(f)

i=0

(
l
i

)
and its data complexity is also O(D).

So deg(f) must be close to n.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 19 / 35

Security requirements

A cryptographically secure Boolean function used in stream ciphers should

be balanced

have high algebraic degree close to n

have large nonlinearity close to 2n−1 − 2n/2−1

have high algebraic immunity close to dn/2e
have good resistance against the fast algebraic attack

Not a easy work!

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 20 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 21 / 35

Generalized Majority Function (Dalai-Maitra-Sarkar, 2005)

The majority function (Braeken et al.) is the symmetric function defined
by:

f(x) = 1 iff. wt(x) ≤ n/2.

Generalized construction: for any subset T ⊂ {x : wt(x) = n/2},

f(x) = 1 iff. wt(x) > n/2 or x ∈ T .

Properties:

1 AI(f) is optimal

2 balancedness depends on T

3 weak against fast algebraic attacks

4 nonlinearity at most 2n−1 −
(
n−1
bn/2c

)
.

Note that
(
n−1
bn/2c

)
≈
√

2
πn2n−1 � 2n/2−1.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 22 / 35

Iterative Construction (Dalai-Gupta-Maitra, 2005)

A 2k + 2-variable function is concatenated by four 2k-variables functions:

φ2k+2 = φ2k||φ2k||φ2k||φ12k,

where φi2j (i > 0) is defined by:

φi2j = φi−12j−2||φ
i
2j−2||φi2j−2||φi+1

2j−2,

with base step φ02j = φ2j for j ≥ 0, φi0 = φ
i [mod 2]
0 for i ≥ 0 and φ10 is

the complement function of φ0.

A toy example: φ0 = x1x2 : 0001, n = 2k = 6

Step 1: φ0 = 0001, φ10 = 1110

Step 2: φ2 = φ0||φ0||φ0||φ10 = 0001||0001||0001||1110,
φ12 = φ00||φ10||φ10||φ20 = 0001||1110||1110||0001

Step 3: φ4 = φ2φ2φ2φ
1
2

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 23 / 35

Iterative Construction

Properties:

1 AI(f) is optimal

2 balancedness depends on the initial function

3 little better behavior against fast algebraic attacks

4 has same nonlinearity as the majority function

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 24 / 35

A General Construction (Claude Carlet, 2006)

Theorem

Assume that there exists a sequence of flats (i.e. of affine subspaces of
Fn2) (Ai)1≤i≤r of dimensions at least dn/2e, such that:

∀i ≤ r, card
(
Ai \

[⋃
j<iAj ∪ supp(f)

])
≤ 1

Fn2 \ supp(f) ⊆
⋃
i≤r Ai.

Then any nonzero annihilator of f has degree ≥ dn/2e.

Applying this result to f and f + 1, one obtains construction of functions
with optimum AI.
This general method may contain many classes of Boolean functions with
optimum AI (E.g. the majority function), yet it is difficult to find other
classes satisfying the above conditions.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 25 / 35

Outline

1 Background on Boolean function (BF)
The applications of BF in LFSR-based stream ciphers
Cryptographic criteria for BF

2 Algebraic attacks on stream ciphers and algebraic immunity (AI)
Algebraic attacks
Algebraic immunity

3 A survey for theoretical constructions of BF with optimal AI
Constructions over vector space
Constructions over finite fields

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 26 / 35

Pioneer work (Carlet-Feng, 2008)

Define the function f with support set

supp(f) = {0, 1, α, α2, · · · , α2n−1−2},

where α is a primitive element of F2n .
Properties:

1 AI(f) is optimal

2 balanced and with degree n− 1

3 nonlinearity lower bounded by 2n−1 − 2 ln 2
π n2n/2, which is better than

the previous ones, and the exact value of nonlinearity is much better
than this bound for small values of n

4 resist all the main attacks ((the Berlekamp-Massey and
Rønjom-Helleseth attacks, fast correlation attacks, standard and fast
algebraic attacks)

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 27 / 35

Construction from PS Bent function (Tu-Deng, 2009)

PSap Bent function (Dillon, 1974)

Given any balanced Boolean function g over F2k , the function

f(x, y) = g(xy2
k−2)

is a Bent function over F22k .

If we take g has support set supp(g) = {1, α, α2, · · · , α2k−1−1}, then the

function f(x, y) = g(xy2
k−2) is a Bent function. Furthermore, f(x, y) has

AI = k if the following conjecture is true.

Conjecture 1

For any integer 0 < t < 2k − 1, the set

St = {(a, b) : 0 ≤ a, b < 2k, a+ b ≡ t (mod 2k − 1), wt(ā) + wt(b̄) < k}

has at most 2k−1 elements.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 28 / 35

Construction from PS Bent function (Tu-Deng, 2009)

Suitably modifying the truth table of f yields a balanced function f1 with
optimum AI and high nonlinearity:

f1(x, y) =

 g(xy2
k−2), ifx · y 6= 0

1, ifx = 0, y ∈ ∆
0, otherwise

where ∆ = {α2k−1−1, α2k−1
, · · · , α2k−2}.

Properties:

1 AI(f1) = k

2 balanced and with degree 2k − 1

3 better lower bound for nonlinearity

4 however, bad resistance to FAA since l(x, y)f1(x, y) ≤ k + 1. This
weekness was repaired by Carlet with slight modifications on the truth
table.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 29 / 35

A construction with similar conjecture (Tang-Carlet, 2010)

Conjecture 2

For any integer 0 < t < 2k − 1, the set

St = {(a, b) : 0 ≤ a, b < 2k, a− b ≡ t (mod 2k − 1), wt(ā) + wt(b̄) < k}

has at most 2k−1 elements.

Suppose the above conjecture is true, let g a function on F2k with

supp(g) = {αs, αs+1, · · · , αs+2k−1−1}. Then the functions

f1(x, y) = g(xy), and f2(x, y) =

{
g(xy) if x 6= 0,

h(y) if x = 0,

where h(y) is a balanced function over F2k with deg(h) = k − 1, have
maximum AI = k.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 30 / 35

A construction with similar conjecture (Tang-Carlet, 2010)

Properties:

1 AI(f1) = AI(f2) = k

2 f2 is balanced while f1 is not,

3 f2 has maximum degree n− 1, while f1 has high degree n− 2

4 better lower bound for nonlinearity, the experiment results for k ≤ 20
show that the actual nonlinearities of f1 and f2 are very close to
22k−1 − 2k−1.

5 it can checked that, for small variables, both f1 and f2 have good
behavior against fast algebraic attacks.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 31 / 35

A construction with a general similar conjecture (Jin,2011)

A general conjecture

For any integer 0 < t < 2k − 1, and any u, v ∈ Z∗
2k−1, the set

St,u,v = {(a, b) : 0 ≤ a, b < 2k, ua+vb ≡ t (mod 2k−1), wt(ā)+wt(b̄) < k}

at most 2k−1 elements.

This general conjecture is Conjecture 1 (2) when (u, v) = (1, 1) ((1,−1)).

Let u be an positive integer such that gcd(2k − 1, u) = 1. Let g a function

on F2k with supp(g) = {αs, αs+1, · · · , αs+2k−1−1}. Then

f(x, y) = g(xy2
k−1−u)

has AI = k. In particular, if u = 2l, 0 ≤ l < k, the function f(x, y) is
Bent function.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 32 / 35

A construction with a general similar conjecture

If the general conjecture is true, the function f(x, y) has maximum AI.
Furthermore,

f1(x, y) =

{
g(xy2

k−1−u) if x 6= 0,

g(y) if x = 0,

where the function g has supp(g) = {αs, αs+1, · · · , αs+2k−1−1}, is a
balanced function with AI = k.
Properties:

1 the function f1 has maximum degree 2k − 1.

2 if u = 1, f1 is the balanced function given by Tu-Deng; and if
u = 2k − 2, f1 is the balanced function given by Tang-Carlet

3 better lower bound for nonlinearity, and actual value of nonlinearity is
very good

4 it has not been checked (but is believed) that f1 have good behavior
against fast algebraic attacks.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 33 / 35

Conclusion

The research of constructing BF over vector space with optimum AI
and other good cryptographical properties is not satisfactory enough.

In general, the functions constructed over finite field have surprisingly
better properties.

Further work
The conjectures in combinatorial field are to be proven, and the actual
nonlinearities of the constructed functions are to be theoretically
determined
The basic idea of the known constructions of BF with optimum AI
originated from BCH codes, may be there are some other codes can be
used to construct BF with good properties.

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 34 / 35

Thanks for attention!

Chunlei Li (Selmer Center) Constructions of BF with optimum AI 35 / 35

	Background on Boolean function (BF)
	The applications of BF in LFSR-based stream ciphers
	Cryptographic criteria for BF

	Algebraic attacks on stream ciphers and algebraic immunity (AI)
	Algebraic attacks
	Algebraic immunity

	A survey for theoretical constructions of BF with optimal AI
	Constructions over vector space
	Constructions over finite fields

	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:
	resultado2:
	hours:
	minutes:
	seconds:
	cronohours:
	cronominutes:
	crseconds:
	day:
	month:
	year:
	button1:
	button2:
	separatordate: /
	separatortime: :
	cronobox:
	cronobox:
	hours:
	separatortime: :
	minutes:

