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Boolean Functions - Representations

Multivariate representation
A Boolean function f (x) : GF(2)n 7→ GF(2) can be represented
uniquely in Algebraic Normal Form(ANF)

f (x1, x2, . . . , xn) =
∑

I⊂{1,2,...,n}

aI
∏
i∈I

xi , aI ∈ GF(2)

Univariate representation
Alternatively, one can consider the Boolean function as a
univariate function f (x) : GF(2n) 7→ GF(2)

f (x) =
2n−1∑
i=0

bix i = Trn(F (x)), bi ∈ GF(2n),b2i = b2
i

where Trn(x) =
∑n−1

i=0 x2i
.
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Bent Functions - Rothaus(1976)

Definition (Walsh transform)

f (x) : GF(2)n 7→ GF(2) Inner product x · b =
∑n

i=1 xibi(= Trn(bx))

f̂ (b) =
∑

x∈GF(2)n

(−1)f (x)+x·b (or
∑

x∈GF(2n)

(−1)Trn(F (x)+bx))

Properties:∑
b∈GF(2)n

(f̂ (b))2 =
∑

x

∑
y

(−1)f (x)+f (y)
∑

b

(−1)b·(x+y)

= 2n
∑

x

(−1)0 = 22n

f (x) is a bent function iff f̂ (b) = ±2n/2 for all b ∈ GF(2)n.

Bent functions exist for even n only.

Dual bent function f ∗(b) defined by f̂ (b) = 2n/2(−1)f∗(b).
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Maiorana-McFarland Construction

The best known construction of bent functions is the
Maiorana-McFarland construction (not bivariate
representation).

Definition
Let n = 2m.

Let π : GF(2)m 7→ GF(2)m be a permutation.
Let g : GF(2)m 7→ GF(2) any mapping.

Then
f (x , y) = x · π(y) + g(y), x , y ∈ GF (2)m.

is a bent function in n = 2m variable.
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Representation in Bivariate Form

Let n = 2m and consider GF (2)n ≈ GF (2m)×GF (2m).

f (x , y) =
∑

0≤i,j≤2m−1

ai,jx iy j , ai.j ∈ GF (2m)

Representing f (x .y) in trace form

f (x , y) = Trm(P(x , y))

for some polynomial P(x , y) with coefficients in GF (2m).

The Walsh transform becomes

f̂ (a,b) =
∑

x ,y∈GF (2m)

(−1)f (x ,y)+Trm(ax+by), a,b ∈ GF (2m).
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Dillon PSap Construction

A special case of Dillon’ partial spread construction is his PSap
construction

Definition
Let n = 2m.

g : GF(2m) 7→ GF(2), a balanced Boolean function with
g(0) = 0. Then

f (x , y) = g(xy2m−2) = g(
x
y
) x , y ∈ GF (2m)

is bent function.
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Dillon’s H Class Construction

The bent functions in Dillon’s class H are defined by

Definition

f (x , y) = Trm(y + xG(yx2m−2)), x , y ∈ GF (2m)

where
G(x) is a permutation of GF (2)m.
G(x) + x does not vanish.
G(x) + βx has 0 or two solutions for any nonzero
β ∈ GF (2m)∗.

Dillon found only constructions in the Maiorana-McFarland
class so this class has received less attention.
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The extension to Family H

g(x , y) =
{

Trm(xH( y
x )) if x 6= 0

Trm(µy) if x = 0

Note g is linear on {(x ,ax) | x ∈ GF (2m)} and {(0, y) | y ∈ GF (2m)}.

Theorem

The Walsh transform of g(x , y) is

ĝ(α, β) =
∑
x,y

(−1)g(x,y)+Tm(αx+βy) =

{
2mNα,β if β = µ
2m(Nα,β − 1) if β 6= µ.

where Nα,β = |{z ∈ GF (2m) |H(z) + βz + α = 0}|.

Theorem

The function g(x , y) is bent iff

G(z) = H(z) + µz is a permutation of GF (2m).

G(z) + δz has 0 or 2 solutions for any δ ∈ GF (2m)∗.
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Dual Bent Functions to Family H

Family H:

g(x , y) =
{

Trm(xH(y
x )) if x 6= 0

Trm(µy) if x = 0

Theorem
The dual of g(x , y) is

g∗(x , y) =
{

1 if H(z) + βz = α has no solution in GF (2)m

0 otherwise
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Family H and o-polynomials

Definition

A permutation polynomial G(z) over GF (2m) is called an
o-polynomial if G(0) = 0, G(1) = 1 and

G(z + γ) + G(z)
z

is a permutation polynomial for all γ ∈ GF (2m).

Theorem

A polynomial G(z) from GF (2m) to GF (2m) is an o-polynomial iff
G(x) + βx is a 2-1 mapping for any β ∈ GF (2m)∗.

There is a close connection between hyperovals and o-polynomials.
Maschietti used monomial hyperovals to construct new important
difference sets in (1998).
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Monomial o-polynomials

Monomial o-polynomials

G(z) = z2i
, where (i ,m) = 1.

G(z) = z6, where m is odd. (Segre (1962))

G(z) = z3·2k+4, where m is 2k − 1. (Glynn (1983))

G(z) = z2k+22k
, where m = 4k − 1. (Glynn (1983))

G(z) = z22k+1+23k+1
, where m = 4k + 1. (Glynn (1983))

Example

To construct a bivariate bent function from G(z) = z6 where m is odd:

g(x , y) = Trm(y6x−5).
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Some further o-polynomials

Theorem (Cherowitzo, Penttila, Pinneri, and Royle 1996)

For q = 2m, m odd, let a = 1

f (z) =
z2 + z

(z2 + z + 1)2 + z1/2 and g(z) =
z4 + z3

(z2 + z + 1)2 + z1/2.

For q = 2m, m ≡ 2 (mod 4), and ω2 + ω + 1, let a = ω

f (z) =
ωz(z2 + z + ω2)

(z2 + ωz + 1)2 + ω2z1/2 and g(z) =
ωz(z2 + z + 1)

z2 + z + 1
+ z1/2.

Then g(z) is an o-polynomial and

fs(z) =
f (z) + asg(z) + s1/2z1/2

1 + as + s1/2

is an o-polynomial for any s ∈ GF (2m).
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Binomial bent functions (with Niho exponents)
Let n = 2m then d is a Niho exponent if d ≡ 2i (mod 2m − 1).

Theorem (Dobbertin et. al. (2006))

If a = b2m+1 then f (x) = Trm(ax2m+1) + Trn(bxd2) is bent on GF(2n) if,

d2 = (2m − 1)3 + 1 (with the condition that if m ≡ 2 (mod 4)
then b is a 5-th power of an element in GF(2n)).

4d2 = (2m − 1) + 4 and m odd.

6d2 = (2m − 1) + 6, and m even.

Theorem (Leander and Kholosha (2006))

Let r > 1 and gcd(r ,m) = 1. Then

f (x) = Trm(x2m+1) + Trn(
2r−1−1∑

i=1

x (2m−1) 1
2r +1)

is a bent function (generalizing the second construction above).
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Niho Bent Functions in 2-variables

Niho bent function in univariate form, t ∈ GF (2n), n = 2m,

f (t) = Trn(
∑

i

αi t (2
m−1)si+1)

Niho bent function in bivariate form (x , y ∈ GF (2m))

g(x , y) = f (ux + vy) = Trm(xTrn
m(
∑

i

αi(u + v
y
x
)(2

m−1)si+1))

g(x , y) =
{

Trm(xH( y
x )) if x 6= 0

Trm(µy) if x = 0.

H(z) = Trn
m(
∑

i αi(u + vz)(2
m−1)si+1)

µ = Trn
m(
∑

i αiv (2m−1)si+1)

For a bent function G(z) = H(z) + µz is an o-polynomial
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Niho exponent d = (2m − 1)1
4 + 1 and generalizations

Theorem (Carlet, Helleseth, Kholosha, Mesnager (2011))

Let r > 1, gcd(r ,m) = 1, a + a2m
= 1 and

f (t) = Trn(at2m+1 +
2r−1−1∑

i=1

t (2
m−1) 1

2r +1).

Let u ∈ GF (2n) \GF (2m) and v ∈ GF (2m). Then f (t) belongs to H
with µ = v and o-polynomial

G(z)2r
= (u + u2m

)2r−1vz +
u2m+2r

+ u2m+r+1

u + u2m .

Take u + u2m
= v = 1 then the dual of f (t) is

f ∗(w) = Trn((u(1 + w + w2m
) + u2n−r

+ w2m
)(1 + w + w2m

)1/(2r−1)).

Both f (t) and f ∗(w) belong to the completed Maiorana-McFarland
class, f ∗(w) does not belong to H.
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Niho exponent d = (2m − 1)3 + 1

Theorem (Helleseth, Kholosha, Mesnager (2011))

Let n = 2m, a = b2m+1 and

f (t) = Trm(at2m+1) + Trn(bt (2
m−1)3+1).

m odd: Let v = 1 and u ∈ F4 \ {0,1}. Then
G(z) = a

1
2 + Trn

m(bu) + a
1
2 fs(z). If b = 1 then

G(z) =
z2 + z

(z2 + z + 1)2 + z1/2

is an o-polynomial (thus f (t) bent).
m ≡ 2 (mod 4): Let v = 1 and u ∈ F16 \ F4 with u5 = 1 and
u + u2m

= ω. Then

G(z) = a
1
2 + Trn

m(b) + (1 + ws + s
1
2 )Trn

m(b(u
4 + 1))fs(z)

is an o-polynomial (thus f (t) bent) also for b not a 5-th power.
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