Niho Bent Functions and Hyperovals

Claude Carlet, Tor Helleseth, Alexander Kholosha, Sihem Mesnager

Selmer Center Department of Informatics University of Bergen Norway

10 November 2011

< ∰ > < ∃ >

Claude Carlet, Tor Helleseth, Alexander Kholosha, Sihem Mes Niho Bent Functions and Hyperovals

Multivariate representation

A Boolean function $f(x) : GF(2)^n \mapsto GF(2)$ can be represented uniquely in Algebraic Normal Form(ANF)

$$f(x_1, x_2, ..., x_n) = \sum_{l \in \{1, 2, ..., n\}} a_l \prod_{i \in I} x_i, \ a_l \in GF(2)$$

Univariate representation

Alternatively, one can consider the Boolean function as a univariate function $f(x) : GF(2^n) \mapsto GF(2)$

$$f(x) = \sum_{i=0}^{2^n-1} b_i x^i = Tr_n(F(x)), \ b_i \in GF(2^n), b_{2i} = b_i^2$$

where $Tr_n(x) = \sum_{i=0}^{n-1} x^{2^i}$.

Bent Functions - Rothaus(1976)

Definition (Walsh transform)

 $f(x) : GF(2)^n \mapsto GF(2)$ Inner product $x \cdot b = \sum_{i=1}^n x_i b_i (= Tr_n(bx))$

$$\hat{f}(b) = \sum_{x \in GF(2)^n} (-1)^{f(x) + x \cdot b} \quad (or \sum_{x \in GF(2^n)} (-1)^{Tr_n(F(x) + bx)})$$

Properties:

$$\sum_{b \in GF(2)^n} (\hat{f}(b))^2 = \sum_x \sum_y (-1)^{f(x)+f(y)} \sum_b (-1)^{b \cdot (x+y)}$$
$$= 2^n \sum_x (-1)^0 = 2^{2n}$$

- f(x) is a bent function iff $\hat{f}(b) = \pm 2^{n/2}$ for all $b \in GF(2)^n$.
- Bent functions exist for even n only.
- Dual bent function $f^*(b)$ defined by $\hat{f}(b) = 2^{n/2}(-1)^{f^*(b)}$.

The best known construction of bent functions is the Maiorana-McFarland construction (not bivariate representation).

Definition

Let n = 2m.

Let π : GF(2)^{*m*} \mapsto GF(2)^{*m*} be a *permutation*. Let g : GF(2)^{*m*} \mapsto GF(2) any mapping.

Then

$$f(x,y) = x \cdot \pi(y) + g(y), \quad x,y \in GF(2)^m.$$

is a bent function in n = 2m variable.

Representation in Bivariate Form

Let
$$n = 2m$$
 and consider $GF(2)^n \approx GF(2^m) \times GF(2^m)$.

$$f(x,y) = \sum_{0 \le i,j \le 2^m - 1} a_{i,j} x^i y^j, \ a_{i,j} \in GF(2^m)$$

Representing f(x,y) in trace form

$$f(x,y) = Tr_m(P(x,y))$$

for some polynomial P(x, y) with coefficients in $GF(2^m)$.

The Walsh transform becomes

$$\hat{f}(a,b) = \sum_{x,y \in GF(2^m)} (-1)^{f(x,y) + Tr_m(ax+by)}, \ a,b \in GF(2^m).$$

< 同 > < ∃ >

Claude Carlet, Tor Helleseth, Alexander Kholosha, Sihem Met Niho Bent Functions and Hyperovals

A special case of Dillon' partial spread construction is his PS_{ap} construction

Definition

Let n = 2m.

 $g: \operatorname{GF}(2^m) \mapsto \operatorname{GF}(2)$, a balanced Boolean function with g(0) = 0. Then

$$f(x,y) = g(xy^{2^m-2}) = g(rac{x}{y}) \quad x,y \in GF(2^m)$$

・ロト ・四ト ・ヨト ・ヨト

크

is bent function.

The bent functions in Dillon's class H are defined by

Definition

$$f(x,y) = Tr_m(y + xG(yx^{2^m-2})), \ x,y \in GF(2^m)$$

where

- G(x) is a permutation of $GF(2)^m$.
- G(x) + x does not vanish.
- $G(x) + \beta x$ has 0 or two solutions for any nonzero $\beta \in GF(2^m)^*$.

Dillon found only constructions in the Maiorana-McFarland class so this class has received less attention.

< 同 > < 回 > < 回 > <

The extension to Family \mathcal{H}

$$g(x, y) = \begin{cases} Tr_m(xH(\frac{y}{x})) & \text{if } x \neq 0\\ Tr_m(\mu y) & \text{if } x = 0 \end{cases}$$

Note *g* is linear on $\{(x, ax) | x \in GF(2^m)\}$ and $\{(0, y) | y \in GF(2^m)\}$.

Theorem

The Walsh transform of g(x, y) is

$$\hat{g}(\alpha,\beta) = \sum_{x,y} (-1)^{g(x,y) + T_m(\alpha x + \beta y)} = \begin{cases} 2^m N_{\alpha,\beta} & \text{if } \beta = \mu \\ 2^m (N_{\alpha,\beta} - 1) & \text{if } \beta \neq \mu. \end{cases}$$

where $N_{\alpha,\beta} = |\{z \in GF(2^m) | H(z) + \beta z + \alpha = 0\}|.$

Theorem

The function g(x, y) is bent iff

•
$$G(z) = H(z) + \mu z$$
 is a permutation of $GF(2^m)$.

• $G(z) + \delta z$ has 0 or 2 solutions for any $\delta \in GF(2^m)^*$.

Dual Bent Functions to Family \mathcal{H}

Family \mathcal{H} :

$$g(x, y) = \begin{cases} Tr_m(xH(\frac{y}{x})) & \text{if } x \neq 0\\ Tr_m(\mu y) & \text{if } x = 0 \end{cases}$$

Theorem

The dual of g(x, y) is

 $g^*(x,y) = \begin{cases} 1 & \text{if } H(z) + \beta z = \alpha \text{ has no solution in } GF(2)^m \\ 0 & \text{otherwise} \end{cases}$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Family \mathcal{H} and o-polynomials

Definition

A permutation polynomial G(z) over $GF(2^m)$ is called an o-polynomial if G(0) = 0, G(1) = 1 and

$$\frac{G(z+\gamma)+G(z)}{z}$$

is a permutation polynomial for all $\gamma \in GF(2^m)$.

Theorem

A polynomial G(z) from $GF(2^m)$ to $GF(2^m)$ is an *o*-polynomial iff $G(x) + \beta x$ is a 2-1 mapping for any $\beta \in GF(2^m)^*$.

There is a close connection between hyperovals and o-polynomials. Maschietti used monomial hyperovals to construct new important difference sets in (1998).

・ロト ・四ト ・ヨト ・ヨト

크

Monomial o-polynomials

Monomial o-polynomials

•
$$G(z) = z^{2^i}$$
, where $(i, m) = 1$.

• $G(z) = z^6$, where *m* is odd. (Segre (1962))

•
$$G(z) = z^{2^k + 2^{2^k}}$$
, where $m = 4k - 1$. (Glynn (1983))

•
$$G(z) = z^{2^{2^{k+1}} + 2^{3^{k+1}}}$$
, where $m = 4k + 1$. (Glynn (1983))

Example

To construct a bivariate bent function from $G(z) = z^6$ where *m* is odd:

$$g(x,y)=Tr_m(y^6x^{-5}).$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (Cherowitzo, Penttila, Pinneri, and Royle 1996)

For $q = 2^m$, m odd, let a = 1

$$f(z) = \frac{z^2 + z}{(z^2 + z + 1)^2} + z^{1/2}$$
 and $g(z) = \frac{z^4 + z^3}{(z^2 + z + 1)^2} + z^{1/2}$.

For $q = 2^m$, $m \equiv 2 \pmod{4}$, and $\omega^2 + \omega + 1$, let $a = \omega$

$$f(z) = \frac{\omega z(z^2 + z + \omega^2)}{(z^2 + \omega z + 1)^2} + \omega^2 z^{1/2} \text{ and } g(z) = \frac{\omega z(z^2 + z + 1)}{z^2 + z + 1} + z^{1/2}.$$

Then g(z) is an o-polynomial and

$$f_{s}(z) = \frac{f(z) + asg(z) + s^{1/2}z^{1/2}}{1 + as + s^{1/2}}$$

(日)

is an o-polynomial for any $s \in GF(2^m)$.

Binomial bent functions (with Niho exponents)

Let n = 2m then d is a Niho exponent if $d \equiv 2^i \pmod{2^m - 1}$.

Theorem (Dobbertin et. al. (2006))

If $a = b^{2^{m+1}}$ then $f(x) = Tr_m(ax^{2^m+1}) + Tr_n(bx^{d_2})$ is bent on GF(2^{*n*}) if,

• $d_2 = (2^m - 1)3 + 1$ (with the condition that if $m \equiv 2 \pmod{4}$ then b is a 5-th power of an element in GF(2ⁿ)).

•
$$4d_2 = (2^m - 1) + 4$$
 and m odd.

•
$$6d_2 = (2^m - 1) + 6$$
, and m even.

Theorem (Leander and Kholosha (2006))

Let r > 1 and gcd(r, m) = 1. Then

$$f(x) = Tr_m(x^{2^m+1}) + Tr_n(\sum_{i=1}^{2^{r-1}-1} x^{(2^m-1)\frac{1}{2^r}+1})$$

is a bent function (generalizing the second construction above).

Niho Bent Functions in 2-variables

Niho bent function in univariate form, $t \in GF(2^n)$, n = 2m,

$$f(t) = Tr_n(\sum_i \alpha_i t^{(2^m-1)s_i+1})$$

Niho bent function in bivariate form $(x, y \in GF(2^m))$

$$g(x,y) = f(ux + vy) = Tr_m(xTr_m^n(\sum_i \alpha_i(u + v\frac{y}{x})^{(2^m-1)s_i+1}))$$

$$g(x, y) = \begin{cases} Tr_m(xH(\frac{y}{x})) & \text{if } x \neq 0\\ Tr_m(\mu y) & \text{if } x = 0. \end{cases}$$

•
$$H(z) = Tr_m^n(\sum_i \alpha_i (u + vz)^{(2^m - 1)s_i + 1})$$

•
$$\mu = \operatorname{Tr}_m^n(\sum_i \alpha_i v^{(2^m-1)s_i+1})$$

• For a bent function $G(z) = H(z) + \mu z$ is an o-polynomial

Niho exponent $d = (2^m - 1)\frac{1}{4} + 1$ and generalizations

Theorem (Carlet, Helleseth, Kholosha, Mesnager (2011))

Let r > 1, gcd(r, m) = 1, $a + a^{2^m} = 1$ and

$$f(t) = Tr_n(at^{2^m+1} + \sum_{i=1}^{2^{r-1}-1} t^{(2^m-1)\frac{1}{2^r}+1}).$$

Let $u \in GF(2^n) \setminus GF(2^m)$ and $v \in GF(2^m)$. Then f(t) belongs to \mathcal{H} with $\mu = v$ and o-polynomial

$$G(z)^{2^{r}} = (u + u^{2^{m}})^{2^{r}-1}vz + \frac{u^{2^{m}+2^{r}} + u^{2^{m+r}+1}}{u + u^{2^{m}}}.$$

Take $u + u^{2^m} = v = 1$ then the dual of f(t) is

$$f^{*}(w) = Tr_{n}((u(1+w+w^{2^{m}})+u^{2^{n-r}}+w^{2^{m}})(1+w+w^{2^{m}})^{1/(2^{r}-1)}).$$

Both f(t) and $f^*(w)$ belong to the completed Maiorana-McFarland class, $f^*(w)$ does not belong to \mathcal{H} .

Niho exponent $d = (2^m - 1)3 + 1$

Theorem (Helleseth, Kholosha, Mesnager (2011))

Let n = 2m, $a = b^{2^{m}+1}$ and

$$f(t) = Tr_m(at^{2^m+1}) + Tr_n(bt^{(2^m-1)3+1}).$$

m odd: Let v = 1 and $u \in \mathbb{F}_4 \setminus \{0, 1\}$. Then $G(z) = a^{\frac{1}{2}} + Tr_m^n(bu) + a^{\frac{1}{2}}f_s(z)$. If b = 1 then

$$G(z) = \frac{z^2 + z}{(z^2 + z + 1)^2} + z^{1/2}$$

is an o-polynomial (thus f(t) bent). **m** \equiv **2** (mod 4): Let v = 1 and $u \in \mathbb{F}_{16} \setminus \mathbb{F}_4$ with $u^5 = 1$ and $u + u^{2^m} = \omega$. Then

$$G(z) = a^{\frac{1}{2}} + Tr_m^n(b) + (1 + ws + s^{\frac{1}{2}})Tr_m^n(b(u^4 + 1))f_s(z)$$

is an o-polynomial (thus f(t) bent) also for b not a 5-th power.